设f(x)在x=0处连续,且x趋近于0时f(x)/x极限存在,证明f(x)在x=0处连续可导

 我来答
ccb173810
推荐于2016-12-02 · TA获得超过629个赞
知道小有建树答主
回答量:298
采纳率:0%
帮助的人:390万
展开全部
limf(x)/x存在,分母-->0,故limf(x)=0,f(x)在x=0连续,limf(x)=f(0)=0
f'(0)=lim[f(x)-f(0)]/[x-0]存在,所以f(x)在x=0连续且可导
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式