已知函数f(x)=sinx+cosx,f'(x)是f(x)的导函数
(1)求函数F(x)=f(x)f'(x)+f的平方(x)的最大值和最小正周期.(2)若f(x)=2f'(x),求tan(x-4分之太)的值...
(1)求函数F(x)=f(x)f'(x)+f的平方(x)的最大值和最小正周期.(2)若f(x)=2f'(x),求tan(x-4分之太)的值
展开
2个回答
展开全部
解:(1)已知函数f(x)=sinx+cosx,则f′(x)=sinx-cosx.
代入F(x)=f(x)f′(x)+[f(x)]2
易得
F(x)=cos2x+sin2x+1=2sin(2x+π4)+1
当 2x+π4=2kπ+π2⇒x=kπ+π8(k∈Z)时, [F(x)]max=2+1=3
最小正周期为 T=2π2=π
(2)由f(x)=2f'(x),易得sinx+cosx=2cosx-2sinx.
解得 tanx=13
∴ tan(x-π/4)=[tanx-tan(π/4)]/[1+tanxtan(π/4)]=(13-1)/(1+13)=12/13
代入F(x)=f(x)f′(x)+[f(x)]2
易得
F(x)=cos2x+sin2x+1=2sin(2x+π4)+1
当 2x+π4=2kπ+π2⇒x=kπ+π8(k∈Z)时, [F(x)]max=2+1=3
最小正周期为 T=2π2=π
(2)由f(x)=2f'(x),易得sinx+cosx=2cosx-2sinx.
解得 tanx=13
∴ tan(x-π/4)=[tanx-tan(π/4)]/[1+tanxtan(π/4)]=(13-1)/(1+13)=12/13
展开全部
1. f(x) = sinx+cosx, f '(x) = cosx - sinx
F(x) = f(x)f'(x) + f²(x) = cos²x - sin²x + 1 + sin2x = 1 + cos2x + sin2x
= 1 + √2 sin(2x + π/4)
最大值 1 + √2 , 最小正周期 π
2. f(x) =2 f '(x) => sinx + cosx = 2(cosx - sinx)
=> 3 sinx = cosx => tanx = 1/3
tan(x - π/4) = (tanx - 1) / (1 + tanx * 1) = (-2/3) / (4/3) = -1/2
F(x) = f(x)f'(x) + f²(x) = cos²x - sin²x + 1 + sin2x = 1 + cos2x + sin2x
= 1 + √2 sin(2x + π/4)
最大值 1 + √2 , 最小正周期 π
2. f(x) =2 f '(x) => sinx + cosx = 2(cosx - sinx)
=> 3 sinx = cosx => tanx = 1/3
tan(x - π/4) = (tanx - 1) / (1 + tanx * 1) = (-2/3) / (4/3) = -1/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询