在平面四边形ABCD中,已知AB=BC=CD=a,角ABC=90度,角BCD=135度,沿AC将四边形折成直二面角B-AC-D,

在平面四边形ABCD中,已知AB=BC=CD=a,角ABC=90度,角BCD=135度,沿AC将四边形折成直二面角B-AC-D,,求二面角B-AD-C的大小要两种方法解题... 在平面四边形ABCD中,已知AB=BC=CD=a,角ABC=90度,角BCD=135度,沿AC将四边形折成直二面角B-AC-D,,求二面角B-AD-C的大小 要两种方法解题 要是3种 再加50分 要详细解题步骤 展开
 我来答
fibermail
2011-11-08 · TA获得超过3893个赞
知道小有建树答主
回答量:541
采纳率:0%
帮助的人:862万
展开全部
先明确原图特征:△ABC为等腰直角三角形,△ACD为直角三角形,且AC=√2a,AD=√3a
沿AC将四边形折成直二面角B-AC-D,又锋茄CD⊥AC(两垂直平面的交线),所以CD⊥平面ABC

方法一:
设AC中点E,连接BE,过E做AD垂线,垂足F,
由DC⊥平面ABC,得 DC垂直BE
又AB=BC,AE=CE,得 BE垂直AC
所以BE垂直平面ADC,所以 BE垂直AD
又EF垂直AD,所以AD垂直平面BEF,AD⊥BF
所以 ∠BFE就是所求角,
其中∠BEF=90°,BE=√2/2a,EF=√6/6a,
所以tan∠BFE=√3,∠BFE=60°
方法二:
在ABC平面内,过C做AC垂线,交AB延长线为G,(可在翻折前后图形中对比观察)
过C做AD垂线,垂足为H,连接GH。
可证∠GHC即所求角,(方法与上一种解法类似)
在RT△GCH中,GC=√2a,CH=√2a/√3,
所以tan∠GCH=GC/CH=√3,∠GHC=60°
方法三:
先按方法二过程做辅助线斗郑,再以CA,CG,CD方向为x,y,z轴正方向银销察建立空间直角坐标系,
用空间向量的方法求解,具体过程就不说了
百度网友a3d1011622e
2012-11-03
知道答主
回答量:17
采纳率:0%
帮助的人:2.7万
展开全部
先明确原图特征:△ABC为等腰直角三角形,△ACD为直角三角形,且汪枯陵AC=√2a,AD=√3a
沿AC将四边形折成直二面角B-AC-D,又CD⊥AC(两垂直平面的交线),所以CD⊥平面ABC

方法一:
设AC中点E,连败薯接BE,过E做AD垂线,垂足F,
由DC⊥平面ABC,得 DC垂直BE
又AB=BC,AE=CE,得 BE垂直AC
所以BE垂直平面ADC,所以 BE垂直AD
又EF垂直AD,所以AD垂直平面BEF,AD⊥BF
所以 ∠BFE就是所求角,
其中∠BEF=90°,BE=√2/2a,EF=√困戚6/6a,
所以tan∠BFE=√3,∠BFE=60°
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式