在平面四边形ABCD中,已知AB=BC=CD=a,角ABC=90度,角BCD=135度,沿AC将四边形折成直二面角B-AC-D,
在平面四边形ABCD中,已知AB=BC=CD=a,角ABC=90度,角BCD=135度,沿AC将四边形折成直二面角B-AC-D,,求二面角B-AD-C的大小要两种方法解题...
在平面四边形ABCD中,已知AB=BC=CD=a,角ABC=90度,角BCD=135度,沿AC将四边形折成直二面角B-AC-D,,求二面角B-AD-C的大小 要两种方法解题 要是3种 再加50分 要详细解题步骤
一种也可以 展开
一种也可以 展开
展开全部
一 设AC中点E,过E做AD垂线,垂足F,连接F。 角BCA=45 角ACD=135-45=90
DC垂直AC 因此DC垂直ABC DC垂直BE
直角三角形ABC,AB=BC,AE=CE BE垂直AC
BE垂直ADC BE垂直AD 又EF垂直AD因此 BFE就是所求角 角BEF=90
BF=根号(2)*a/2 =AE AD=根号(3)*a EF/AE=CD/AD EF=根号(6)*a/6
BF/EF=根号3 角BFE=60
方法二 在ABC平面内,过C做AC垂线,交AB延长线为G,过C做AD垂线,垂足为H,连接GH。
角BCA=45 角ACD=135-45=90
DC垂直AC 因此DC垂直ABC DC垂直GC 又GC垂直AC 因此 GC垂直平面ADC
GC垂直AD 又 CH垂直AD因此 CGH垂直AD 角GHC即是所求
角BAC=45 AC=根号(2)*a =GC CH*AD=AC*DC AD=根号(3)*a CH= 根号(6)*a/3
角GCH=90 GC/CH=根号3 角GHC=60
方法三 在AB上有一点 M,过M 做MN垂直AD垂足N,平面ADC内过N做NK垂直AD交AC于K
连接MK 角MNK即是所求 角BCA=45 角ACD=135-45=90
AD垂直平面MNK AD垂直MK ,DC垂直面ABC DC垂直MK
因此MK垂直ADC 角MKN=90
cos(CAD)=AC/AD=根号(2)/根号(3) cos(BAC)= AB/AC=1/根号(2)
cos(BAD)=AN/AM=AN/Ak*AK/AM=cos(CAD)*cos(BAC)=1/根号(3)
sin(BAD)=根号(2)/根号(3) sin(BAC)=根号(2)/2
sinMNK=MK/MN=AM*sin(BAC)/[AM*sin(BAD)]=sin(BAC)/sin(BAD)=根号(3)/2
角MNK=60
DC垂直AC 因此DC垂直ABC DC垂直BE
直角三角形ABC,AB=BC,AE=CE BE垂直AC
BE垂直ADC BE垂直AD 又EF垂直AD因此 BFE就是所求角 角BEF=90
BF=根号(2)*a/2 =AE AD=根号(3)*a EF/AE=CD/AD EF=根号(6)*a/6
BF/EF=根号3 角BFE=60
方法二 在ABC平面内,过C做AC垂线,交AB延长线为G,过C做AD垂线,垂足为H,连接GH。
角BCA=45 角ACD=135-45=90
DC垂直AC 因此DC垂直ABC DC垂直GC 又GC垂直AC 因此 GC垂直平面ADC
GC垂直AD 又 CH垂直AD因此 CGH垂直AD 角GHC即是所求
角BAC=45 AC=根号(2)*a =GC CH*AD=AC*DC AD=根号(3)*a CH= 根号(6)*a/3
角GCH=90 GC/CH=根号3 角GHC=60
方法三 在AB上有一点 M,过M 做MN垂直AD垂足N,平面ADC内过N做NK垂直AD交AC于K
连接MK 角MNK即是所求 角BCA=45 角ACD=135-45=90
AD垂直平面MNK AD垂直MK ,DC垂直面ABC DC垂直MK
因此MK垂直ADC 角MKN=90
cos(CAD)=AC/AD=根号(2)/根号(3) cos(BAC)= AB/AC=1/根号(2)
cos(BAD)=AN/AM=AN/Ak*AK/AM=cos(CAD)*cos(BAC)=1/根号(3)
sin(BAD)=根号(2)/根号(3) sin(BAC)=根号(2)/2
sinMNK=MK/MN=AM*sin(BAC)/[AM*sin(BAD)]=sin(BAC)/sin(BAD)=根号(3)/2
角MNK=60
追问
解法一中 BF 是不是 三角形ABD 斜边上的高
追答
BF垂直AD 自然 是AD边上的高
展开全部
这道题是不是缺少条件呀,因为沿AC折多少不确定,至少得知道折后的某个角吧,建议用空间向量法,可以在B点建立坐标,空间想象力好的话就用一般方法吧。
追问
提上说了 折成直二面角
追答
过B做BF垂直于AC,过F做FE垂直于AC,交AD于E,连接BE,首先可以算出FE//CD ,也能算出长度,然后可以看出角BFE是所求二面角,将其放到三角形BFE中,已知了BF,FE,将BE放入三角形ABD中,按比例求出BE,就可以解三角形BFE,进而求得二面角了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询