已知a是实数,函数f(x)=2ax^2+2x-3-a,如果函数y=f(x)在区间【-1,1】上有零点,求a的取值范围
展开全部
f(x)=0,即2ax²+2x-3-a=0
参变分离,过程如下:
a(2x²-1)=3-2x
当2x²-1=0,即x=±√2/2时,等式恒不成立,舍去;
当x≠±√2/2时,a=(3-2x)/(2x²-1),
求a的范围,就是求y=(3-2x)/(2x²-1),x属于【-1,1】且x≠±√2/2的值域;
换元法:令3-2x=t,则t属于【1,5】且x=(3-t)/2;则y=t/[(3-t)²/2-1]
整理:y=2t/(t²-6t+7)
上下同除t,得:y=2/(t+7/t-6)
g(t)=t+7/t是对勾函数,勾底是t=√7在区间【1,5】内,
g(√7)=2√7;g(1)=8;g(5)=6.4;
所以:2√7≦t+7/t≦8
则2√7-6≦t+7/t-6≦2;
则:1/(t+7/t-6)≦-(3+√7)/4或1/(t+7/t-6)≧1/2
所以y=2t/(t²-6t+7)的值域是(-∞,-(3+√7)/2]U[1,+∞)
即a的取值范围是(-∞,-(3+√7)/2]U[1,+∞)
希望能帮到你,如果不懂,请Hi我,祝学习进步!
参变分离,过程如下:
a(2x²-1)=3-2x
当2x²-1=0,即x=±√2/2时,等式恒不成立,舍去;
当x≠±√2/2时,a=(3-2x)/(2x²-1),
求a的范围,就是求y=(3-2x)/(2x²-1),x属于【-1,1】且x≠±√2/2的值域;
换元法:令3-2x=t,则t属于【1,5】且x=(3-t)/2;则y=t/[(3-t)²/2-1]
整理:y=2t/(t²-6t+7)
上下同除t,得:y=2/(t+7/t-6)
g(t)=t+7/t是对勾函数,勾底是t=√7在区间【1,5】内,
g(√7)=2√7;g(1)=8;g(5)=6.4;
所以:2√7≦t+7/t≦8
则2√7-6≦t+7/t-6≦2;
则:1/(t+7/t-6)≦-(3+√7)/4或1/(t+7/t-6)≧1/2
所以y=2t/(t²-6t+7)的值域是(-∞,-(3+√7)/2]U[1,+∞)
即a的取值范围是(-∞,-(3+√7)/2]U[1,+∞)
希望能帮到你,如果不懂,请Hi我,祝学习进步!
展开全部
y=f(x)在区间[-1,1]上有零点转化为(2x2-1)a=3-2x在[-1,1]上有解,把a用x表示出来,转化为求函数 y=2x2-13-2x在[-1,1]上的值域,再用分离常数法求函数 y=2x2-13-2x在[-1,1]的值域即可.
解:a=0时,不符合题意,所以a≠0,
又∴f(x)=2ax2+2x-3-a=0在[-1,1]上有解,⇔(2x2-1)a=3-2x在[-1,1]上有解 ⇔1a=2x2-13-2x
在[-1,1]上有解,问题转化为求函数 y=2x2-13-2x[-1,1]上的值域;
设t=3-2x,x∈[-1,1],则2x=3-t,t∈[1,5], y=12•(t-3)2-2t=12(t+7t-6),
设 g(t)=t+7t.g′(t)=t2-7t2, t∈[1,7)时,g'(t)<0,此函数g(t)单调递减,
t∈(7,5]时,g'(t)>0,此函数g(t)单调递增,
∴y的取值范围是 [7-3,1],
∴f(x)=2ax2+2x-3-a=0在[-1,1]上有解ó 1a∈ [7-3,1]⇔a≥1或 a≤-3+72.
故a≥1或a≤- 3+72.
解:a=0时,不符合题意,所以a≠0,
又∴f(x)=2ax2+2x-3-a=0在[-1,1]上有解,⇔(2x2-1)a=3-2x在[-1,1]上有解 ⇔1a=2x2-13-2x
在[-1,1]上有解,问题转化为求函数 y=2x2-13-2x[-1,1]上的值域;
设t=3-2x,x∈[-1,1],则2x=3-t,t∈[1,5], y=12•(t-3)2-2t=12(t+7t-6),
设 g(t)=t+7t.g′(t)=t2-7t2, t∈[1,7)时,g'(t)<0,此函数g(t)单调递减,
t∈(7,5]时,g'(t)>0,此函数g(t)单调递增,
∴y的取值范围是 [7-3,1],
∴f(x)=2ax2+2x-3-a=0在[-1,1]上有解ó 1a∈ [7-3,1]⇔a≥1或 a≤-3+72.
故a≥1或a≤- 3+72.
追问
抄袭,我能看懂他的我还问啊
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |