如图,在等腰RT△ABC中,∠A=90°,P为BC的中点,小明拿着含45°角的透明三角板,使45°角的顶点落在点P,且绕
如图,在等腰RT△ABC中,∠A=90°,P为BC的中点,小明拿着含45°角的透明三角板,使45°角的顶点落在点P,且绕P旋转。(1)如图1,当三角板的两边分别交AB、A...
如图,在等腰RT△ABC中,∠A=90°,P为BC的中点,小明拿着含45°角的透明三角板,使45°角的顶点落在点P,且绕P旋转。(1)如图1,当三角板的两边分别交AB、AC于点E、F时,是说明△BPE∽△CFP。(2)将三角板绕点P旋转到如图2所示的位置,三角板的两边分别交BA的延长线和边AC于点E、F。探究1:△BPE与△CFP还相似吗?(只需写出结论)。探究2:连接EF,△BPE与△EFP是否相似?请说明理由。
展开
7个回答
2012-04-06
展开全部
分析:(1)找出△BPE与△CFP的对应角,其中∠BPE+∠CPF=150°,∠CPF+∠CFP=150°,得出∠BPE=∠CFP,从而解决问题;
(2)①小题同前可证,②小题可通过对应边成比例证明.解答:(1)证明:∵在△ABC中,∠BAC=120°,AB=AC,
∴∠B=∠C=30°.
∵∠B+∠BPE+∠BEP=180°,
∴∠BPE+∠BEP=150°,
∴∠EPF=30°,
又∵∠BPE+∠EPF+∠CPF=180°,
∴∠BPE+∠CPF=150°,
∴∠BEP=∠CPF,
∴△BPE∽△CFP(两角对应相等的两个三角形相似).
(2)解:①△BPE∽△CFP;②△BPE与△PFE相似.
下面证明结论:
同(1),可证△BPE∽△CFP,得 CP:BE=PF:PE,而CP=BP,因此 BP:BE=PF:PE.
又因为∠EBP=∠EPF,所以△BPE∽△PFE(两边对应成比例且夹角相等的两个三角形相似).点评:这是一道操作探究题,它考查了相似三角形的判定.它以每位学生都有的30°三角板在图形上的运动为背景,既考查了学生图形旋转变换的思想,静中思动,动中求静的思维方法,又考查了学生动手实践、自主探究的能力.
(2)①小题同前可证,②小题可通过对应边成比例证明.解答:(1)证明:∵在△ABC中,∠BAC=120°,AB=AC,
∴∠B=∠C=30°.
∵∠B+∠BPE+∠BEP=180°,
∴∠BPE+∠BEP=150°,
∴∠EPF=30°,
又∵∠BPE+∠EPF+∠CPF=180°,
∴∠BPE+∠CPF=150°,
∴∠BEP=∠CPF,
∴△BPE∽△CFP(两角对应相等的两个三角形相似).
(2)解:①△BPE∽△CFP;②△BPE与△PFE相似.
下面证明结论:
同(1),可证△BPE∽△CFP,得 CP:BE=PF:PE,而CP=BP,因此 BP:BE=PF:PE.
又因为∠EBP=∠EPF,所以△BPE∽△PFE(两边对应成比例且夹角相等的两个三角形相似).点评:这是一道操作探究题,它考查了相似三角形的判定.它以每位学生都有的30°三角板在图形上的运动为背景,既考查了学生图形旋转变换的思想,静中思动,动中求静的思维方法,又考查了学生动手实践、自主探究的能力.
展开全部
(1)
证明:
∵⊿ABC为等腰直角三角形
∴∠B=∠C=45º
∴∠CPF+∠CFP=180º-∠C=135º
∵∠BBE+∠CPF=180º-∠EPF=135º
∴∠BPE=∠CFP
∴⊿PBE∽⊿CFP(AA‘)
(2)
探究1:△BPE与△CFP还相似
∵∠CPF+∠CFP=∠BBE+∠CPF
探究2:,△BPE与△EFP不相似
连接AP,∵AP是中线,根据三线合一,AP⊥BC
∴∠BPA=90º
∠BPE=90º+∠APE
∵⊿EFP是等腰直角三角形
∠PEF=90º
∴∠BPE是钝角>∠PEF
∴△BPE与△EFP不相似
证明:
∵⊿ABC为等腰直角三角形
∴∠B=∠C=45º
∴∠CPF+∠CFP=180º-∠C=135º
∵∠BBE+∠CPF=180º-∠EPF=135º
∴∠BPE=∠CFP
∴⊿PBE∽⊿CFP(AA‘)
(2)
探究1:△BPE与△CFP还相似
∵∠CPF+∠CFP=∠BBE+∠CPF
探究2:,△BPE与△EFP不相似
连接AP,∵AP是中线,根据三线合一,AP⊥BC
∴∠BPA=90º
∠BPE=90º+∠APE
∵⊿EFP是等腰直角三角形
∠PEF=90º
∴∠BPE是钝角>∠PEF
∴△BPE与△EFP不相似
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
:(1)∵等腰Rt△ABC
∴∠B=∠C=45°
∵∠EPF=45°
∴∠BPE+∠CPF=∠CPF+∠CFP=135°
则∠BPE=∠CFP
在△BPE与△CFP中
{∠BPE=∠CFP;∠B=∠C=45°
∴△BPE∽△CFP
解(2)①相似
②△EPF∽△BPE
理由如下:
∵△BPE∽△CFP
∴BP:PE=CF:FP
∵P是BC的中点
∴CP:PE=CF:FP
即CP:CF=PE:FP
在△CPF与△EPF中
CP:CF=PE:FP;∠EPF=∠CPF=45°
∴△CPF∽△EPF
∵△BPE∽△CFP
∴△EPF∽△BPE
∴∠B=∠C=45°
∵∠EPF=45°
∴∠BPE+∠CPF=∠CPF+∠CFP=135°
则∠BPE=∠CFP
在△BPE与△CFP中
{∠BPE=∠CFP;∠B=∠C=45°
∴△BPE∽△CFP
解(2)①相似
②△EPF∽△BPE
理由如下:
∵△BPE∽△CFP
∴BP:PE=CF:FP
∵P是BC的中点
∴CP:PE=CF:FP
即CP:CF=PE:FP
在△CPF与△EPF中
CP:CF=PE:FP;∠EPF=∠CPF=45°
∴△CPF∽△EPF
∵△BPE∽△CFP
∴△EPF∽△BPE
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
:(1)∵等腰Rt△ABC
∴∠B=∠C=45°
∵∠EPF=45°
∴∠BPE+∠CPF=∠CPF+∠CFP=135°
则∠BPE=∠CFP
在△BPE与△CFP中
{∠BPE=∠CFP;∠B=∠C=45°
∴△BPE∽△CFP
解(2)①相似
②△EPF∽△BPE
理由如下:
∵△BPE∽△CFP
∴BP:PE=CF:FP
∵P是BC的中点
∴CP:PE=CF:FP
即CP:CF=PE:FP
在△CPF与△EPF中
CP:CF=PE:FP;∠EPF=∠CPF=45°
∴△CPF∽△EPF
∵△BPE∽△CFP
∴△EPF∽△BPE
∴∠B=∠C=45°
∵∠EPF=45°
∴∠BPE+∠CPF=∠CPF+∠CFP=135°
则∠BPE=∠CFP
在△BPE与△CFP中
{∠BPE=∠CFP;∠B=∠C=45°
∴△BPE∽△CFP
解(2)①相似
②△EPF∽△BPE
理由如下:
∵△BPE∽△CFP
∴BP:PE=CF:FP
∵P是BC的中点
∴CP:PE=CF:FP
即CP:CF=PE:FP
在△CPF与△EPF中
CP:CF=PE:FP;∠EPF=∠CPF=45°
∴△CPF∽△EPF
∵△BPE∽△CFP
∴△EPF∽△BPE
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
探究2:
∵△BPE∽△CFP
∴∠BPE=∠CFP
EP/PF=BP/CF
∵P为BC中点
∴BP=CP
∴EP/PF=CP/CF
又∵∠EPF=∠B=45°
∴△EPF∽△PCF
∴∠PFC=∠EFP
又∵∠BPE=∠CFP
∴∠EFP=∠EPF
又∵∠B=∠EPF=45°
∴△BPE∽△PFE
∵△BPE∽△CFP
∴∠BPE=∠CFP
EP/PF=BP/CF
∵P为BC中点
∴BP=CP
∴EP/PF=CP/CF
又∵∠EPF=∠B=45°
∴△EPF∽△PCF
∴∠PFC=∠EFP
又∵∠BPE=∠CFP
∴∠EFP=∠EPF
又∵∠B=∠EPF=45°
∴△BPE∽△PFE
参考资料: 自己写的
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询