已知向量a=(sinx,0),b=(cosx,1).其中0<x<2π/3,则|a/2-根3 b/2|的取值范围是
展开全部
解:因为向量a=(sinx,0),b=(cosx,1),所以:
a/2-√3 b/2
=(sinx/2-(√3/2)*cosx,-√3/2)
=( sin(x-π/3),-√3/2)
则|a/2-√3 b/2|
=√[ sin²(x-π/3)+(-√3/2)²]
=√[ sin²(x-π/3)+3/4]
因为0<x<2π/3,则-π/3<x-π/3<π/3
所以-√3/2<sin(x-π/3)<√3/2
即0≤sin²(x-π/3)<3/2
所以3/4≤ sin²(x-π/3)+3/4<9/4
则√3/2≤√[ sin²(x-π/3)+3/4]<3/2
所以|a/2-根3 b/2|的取值范围是[√3/2,3/2)
a/2-√3 b/2
=(sinx/2-(√3/2)*cosx,-√3/2)
=( sin(x-π/3),-√3/2)
则|a/2-√3 b/2|
=√[ sin²(x-π/3)+(-√3/2)²]
=√[ sin²(x-π/3)+3/4]
因为0<x<2π/3,则-π/3<x-π/3<π/3
所以-√3/2<sin(x-π/3)<√3/2
即0≤sin²(x-π/3)<3/2
所以3/4≤ sin²(x-π/3)+3/4<9/4
则√3/2≤√[ sin²(x-π/3)+3/4]<3/2
所以|a/2-根3 b/2|的取值范围是[√3/2,3/2)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询