解高中立体几何的方法
如:证明线面平行想到三角形中位线和证明平行四边形法,那么证面面平行、面面垂直、线面垂直等要首先想到什么方法,算棱锥的体积,除了换顶点还有什么方法,还有异面角怎么算...
如:证明线面平行想到三角形中位线和证明平行四边形法,那么证面面平行、面面垂直、线面垂直等要首先想到什么方法,算棱锥的体积,除了换顶点还有什么方法,还有异面角怎么算
展开
2个回答
展开全部
1,平面外直线和平面内的一条直线平行由平面外直线平行于这个平面.这是由线线平行到线面平行
2,一条直线平行于一个平面,过这条直线的平面和已知平面相交,则这条直线平行于两个平面的交线,这是线面平行到线线平行
3,一个平面内的两条相交直线分别和另一个平面平行,则这两个平面平行,这是线面平行到面面平行
4,两个平面平行,第三个平面和它们相交,则交线平行,这是面面平行到线面平行
在具体运用中可根据题设条件进行相互转化.
5,一条直线和平面内的两条相交直线都垂直,则这条直线和这个平面垂直.这是由线线垂直到线面垂直
6,一条直线和一个平面垂直,则这条直线和这个平面内的所有直线都垂直,这是由线面垂直到线线垂直
7,一条直线和一个平面垂直,则经过这条直线和平面和已知平面垂直,这是由线面垂直到面面垂直
8,两个平面互相垂直,其中一个平面内的一条直线垂直于交线,则这条直线垂直于另一个平面,这是由面面垂直到线面垂直,也到线线垂直,这一条包含了两条,即由面面垂直到线面垂直,也由面面垂直到线线垂直.
在应用时,平行和垂直的判定定和性质定理要结合起来,才能在做题时灵活转化.
2,一条直线平行于一个平面,过这条直线的平面和已知平面相交,则这条直线平行于两个平面的交线,这是线面平行到线线平行
3,一个平面内的两条相交直线分别和另一个平面平行,则这两个平面平行,这是线面平行到面面平行
4,两个平面平行,第三个平面和它们相交,则交线平行,这是面面平行到线面平行
在具体运用中可根据题设条件进行相互转化.
5,一条直线和平面内的两条相交直线都垂直,则这条直线和这个平面垂直.这是由线线垂直到线面垂直
6,一条直线和一个平面垂直,则这条直线和这个平面内的所有直线都垂直,这是由线面垂直到线线垂直
7,一条直线和一个平面垂直,则经过这条直线和平面和已知平面垂直,这是由线面垂直到面面垂直
8,两个平面互相垂直,其中一个平面内的一条直线垂直于交线,则这条直线垂直于另一个平面,这是由面面垂直到线面垂直,也到线线垂直,这一条包含了两条,即由面面垂直到线面垂直,也由面面垂直到线线垂直.
在应用时,平行和垂直的判定定和性质定理要结合起来,才能在做题时灵活转化.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询