电气工程英语翻译 ,求高手帮忙翻译下这段话 (有道翻译google翻译的别进来乱 OK?)
ExperimentalresultsforthemagneticcouplingcanbeseeninFig.10whereboththeloaddisturbance...
Experimental results for the magnetic coupling can be seen
in Fig. 10 where both the load disturbance and torsion angle
errors are corrected for a load-side set-point position-
referenced system.
Although the results shown in Fig. 10 show fast disturbance
rejection and torsion angle compensation, noticeable deviation
occurs on the load-side position. The small variations in load-
side position are owing to the somewhat poor integrity of the estimated load torque, a consequence of too fast observer
dynamics. To improve load-side position stability, the
estimates of load-side position and disturbance torque are
constructed from separate minimum-order observers, a ‘fast’
observer for load-side position with observer poles placed as
previously, and a ‘slow’ observer for load-torque estimation
with observer poles placed at half the ‘bandwidth’ of the fast observer. This enhanced technique is referred to as the
dual-observer method and the modified controller structure is
shown in Fig. 11 [12].
The separation of the disturbance torque estimate and the
load-position estimate into slow and fast observers,
respectively, produces a substantial improvement in load-
side set-point position tracking. Fig. 12 illustrates the results
for this enhanced dual-observer-based controller strategy.
The performance of the experimental system incorporating
the dual-observer approach is outstanding as can be seen from
Fig. 12. Both steady-state disturbance and torsion angle error
have been compensated providing perfect load-side set-point
position tracking. However, this is at the expense of
somewhat slower response.
5 Load angle observation error and
correction
For load-side disturbance torques up to approximately 50% of
the rated pull out torque the magnetic coupling behaves
entirely linearly. However, for a disturbance torque .50%,
the coupling’s torque transfer increasingly deviates from the
linear approximation. As the load-side position is estimated
from a linear observer, at high disturbance torque the
estimated load-side position and true load-side position
begin to deviate. To illustrate the non-linearity error
inherent in an observer constructed from a linear model,
consider the simulation results of Fig. 13 with a reference
position of 0 radians and disturbance of 75% of rated
torque TG.
The observed load-side position differs from the true
position because the state estimation is constructed from a
linearised two-inertia model. Consequently, a modification
of the load-side position estimate is necessary. In steady-
state, the linear load-side position estimate is given by……………… 展开
in Fig. 10 where both the load disturbance and torsion angle
errors are corrected for a load-side set-point position-
referenced system.
Although the results shown in Fig. 10 show fast disturbance
rejection and torsion angle compensation, noticeable deviation
occurs on the load-side position. The small variations in load-
side position are owing to the somewhat poor integrity of the estimated load torque, a consequence of too fast observer
dynamics. To improve load-side position stability, the
estimates of load-side position and disturbance torque are
constructed from separate minimum-order observers, a ‘fast’
observer for load-side position with observer poles placed as
previously, and a ‘slow’ observer for load-torque estimation
with observer poles placed at half the ‘bandwidth’ of the fast observer. This enhanced technique is referred to as the
dual-observer method and the modified controller structure is
shown in Fig. 11 [12].
The separation of the disturbance torque estimate and the
load-position estimate into slow and fast observers,
respectively, produces a substantial improvement in load-
side set-point position tracking. Fig. 12 illustrates the results
for this enhanced dual-observer-based controller strategy.
The performance of the experimental system incorporating
the dual-observer approach is outstanding as can be seen from
Fig. 12. Both steady-state disturbance and torsion angle error
have been compensated providing perfect load-side set-point
position tracking. However, this is at the expense of
somewhat slower response.
5 Load angle observation error and
correction
For load-side disturbance torques up to approximately 50% of
the rated pull out torque the magnetic coupling behaves
entirely linearly. However, for a disturbance torque .50%,
the coupling’s torque transfer increasingly deviates from the
linear approximation. As the load-side position is estimated
from a linear observer, at high disturbance torque the
estimated load-side position and true load-side position
begin to deviate. To illustrate the non-linearity error
inherent in an observer constructed from a linear model,
consider the simulation results of Fig. 13 with a reference
position of 0 radians and disturbance of 75% of rated
torque TG.
The observed load-side position differs from the true
position because the state estimation is constructed from a
linearised two-inertia model. Consequently, a modification
of the load-side position estimate is necessary. In steady-
state, the linear load-side position estimate is given by……………… 展开
展开全部
对于电磁联结器的实验结果能被预期
在图 10 哪里两者的装载扰动和扭转角
错误为一个装载-边的决胜点职务被修正-
叁考的系统。
虽然在图 10 被显示的结果表示快速的扰动
拒绝和扭转按某一角度转动补偿,引人注目的误差
在装载-边的职务上发生。装载中的小变化-
旁的职务由于估计装载扭矩的有一些贫穷正直,太快速观察者的结果
动力学。要改良装载-边的职务稳定这
装载-边职务和扰动扭矩的财测是
从分开的最低定货观察者装配,一 " 斋戒 "
观察者为装载-边的职务用观察者极放置当做
先前,和一位 " 缓慢的 " 观察者为装载-扭矩的判断
与观察者极放置在快速观察者的一半的’频宽’。这个可提高的技术被称为这
双重观察者方法和 modi?ed 会计长结构是
在图 11[12] 显示。
扰动的使解除契约扭矩估计和这
装载-职务估计进入缓慢、快速的观察者之内,
分别地,在装载中生产一个可观的改良-
边决胜点放置追踪。图 12 举例说明结果
为这提高了双重-以观察者为主的会计长战略。
实验系统合并的运转
双重观察者方法是未解决的因为能被预期从
图 12.不变的扰动和扭转按某一角度转动错误
已经被补整提供完全的装载-边的决胜点
放置追踪。然而,这是牺牲
有一些较慢的回应。
5装载角观察错误和
修正
因为装载-边的扰动扭矩提高到大约 50%
定格者拉出扭矩,电磁联结器举止
完全地线性地。然而,为扰动扭矩 .50%,
联结器扭矩转帐逐渐地脱离这
线型的近似值。当做装载-边的职务正在估计
从一位线性的观察者,在高度扰动扭矩这
估计装载-边的职务和真实的装载-边职务
开始脱离。举例说明非直线性的错误
在一位观察者的固有的从一个线性的模型装配,
用一个叁考考虑图 13 的模拟结果
0个弧度的职务和扰动 75% 定格的
扭矩 TG。
被观察的装载-边的职务差异从这真实的
因为规定判断构成,所以放置一
被使线性化的两惯性的模型。结果, modi?阳离子
装载-边职务估计是必需的。在定态中-
规定,线性的装载-边的职务估计有在…之前……………
在图 10 哪里两者的装载扰动和扭转角
错误为一个装载-边的决胜点职务被修正-
叁考的系统。
虽然在图 10 被显示的结果表示快速的扰动
拒绝和扭转按某一角度转动补偿,引人注目的误差
在装载-边的职务上发生。装载中的小变化-
旁的职务由于估计装载扭矩的有一些贫穷正直,太快速观察者的结果
动力学。要改良装载-边的职务稳定这
装载-边职务和扰动扭矩的财测是
从分开的最低定货观察者装配,一 " 斋戒 "
观察者为装载-边的职务用观察者极放置当做
先前,和一位 " 缓慢的 " 观察者为装载-扭矩的判断
与观察者极放置在快速观察者的一半的’频宽’。这个可提高的技术被称为这
双重观察者方法和 modi?ed 会计长结构是
在图 11[12] 显示。
扰动的使解除契约扭矩估计和这
装载-职务估计进入缓慢、快速的观察者之内,
分别地,在装载中生产一个可观的改良-
边决胜点放置追踪。图 12 举例说明结果
为这提高了双重-以观察者为主的会计长战略。
实验系统合并的运转
双重观察者方法是未解决的因为能被预期从
图 12.不变的扰动和扭转按某一角度转动错误
已经被补整提供完全的装载-边的决胜点
放置追踪。然而,这是牺牲
有一些较慢的回应。
5装载角观察错误和
修正
因为装载-边的扰动扭矩提高到大约 50%
定格者拉出扭矩,电磁联结器举止
完全地线性地。然而,为扰动扭矩 .50%,
联结器扭矩转帐逐渐地脱离这
线型的近似值。当做装载-边的职务正在估计
从一位线性的观察者,在高度扰动扭矩这
估计装载-边的职务和真实的装载-边职务
开始脱离。举例说明非直线性的错误
在一位观察者的固有的从一个线性的模型装配,
用一个叁考考虑图 13 的模拟结果
0个弧度的职务和扰动 75% 定格的
扭矩 TG。
被观察的装载-边的职务差异从这真实的
因为规定判断构成,所以放置一
被使线性化的两惯性的模型。结果, modi?阳离子
装载-边职务估计是必需的。在定态中-
规定,线性的装载-边的职务估计有在…之前……………
北科教育
2019-08-21 广告
2019-08-21 广告
北科教育隶属于北京北科教育培训中心,始建于2005年,是一所集职业教育和技能培训为一体的专业培训机构,电梯课程授课内容:培训内容:焊接基础知识,电弧焊及碳弧气刨,焊接安全技术,气焊气割及其安全技术,焊接劳动卫生与保护,融化及气体保护焊。...
点击进入详情页
本回答由北科教育提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询