如图,已知抛物线y=-4/9x²+bx+c与x轴相交于A、B两点,其对称轴为直线x=2,且与x轴交于点D,AO=1

(2)若线段BC的垂直平分线EF交BC于点E,交x轴于点F。求FC的长(3)探究:在抛物线的对称轴上是否存在点P,使⊙P与x轴、直线BC都相切?若存在,请求出点P的坐标;... (2)若线段BC的垂直平分线EF交BC于点E,交x轴于点F。求FC的长
(3)探究:在抛物线的对称轴上是否存在点P,使⊙P与x轴、直线BC都相切?若存在,请求出点P的坐标;若不存在,请说明理由。
展开
韩增民松
2011-11-13 · TA获得超过2.3万个赞
知道大有可为答主
回答量:5584
采纳率:40%
帮助的人:2688万
展开全部
(1)解析:∵抛物线y=-4/9x^2+bx+c, 其对称轴为x=2
y=-4/9x^2+bx+c=-4/9(x-9b/8)^2+9b^2/16+c
∴9b/8=2==>b=16/9
y=-4/9x^2+16/9x+c
∵OA=1==>A(-1,0)==>AD=1+2=3
-4/9-16/9+c=0==>c=20/9
B(5,0)
(2)解析:∵y=-4/9x^2+16/9x+20/9=-4/9(x-2)^2+4
∴顶点C(2,4)==>BC中点(3.5,2)
BC斜率为-4/3
∴BC中垂线EF方程为:y-2=3/4(x-3.5)==>6x-8y-5=0
∴F(5/6,0)
|FC|=√[(2-5/6)^2+4^2]=25/6
(3)解析:在抛物线对称轴上肯定存在点P,即∠CBD平分线与中垂线交点P
Tan∠CBD=4/3
Tan∠CBD =2Tan(∠CBD/2)/[1-(Tan(∠CBD/2))^2]=4/3
解得Tan(∠CBD/2)=1/2
PD/BD=1/2==>PD=3/2
∴P(2,3/2)
王家子弟之大少
2012-06-07
知道答主
回答量:22
采纳率:0%
帮助的人:3.5万
展开全部
(1)解析:∵抛物线y=-4/9x^2+bx+c, 其对称轴为x=2
y=-4/9x^2+bx+c=-4/9(x-9b/8)^2+9b^2/16+c
∴9b/8=2==>b=16/9
y=-4/9x^2+16/9x+c
∵OA=1==>A(-1,0)==>AD=1+2=3
-4/9-16/9+c=0==>c=20/9
B(5,0)
(2)解析:∵y=-4/9x^2+16/9x+20/9=-4/9(x-2)^2+4
∴顶点C(2,4)==>BC中点(3.5,2)
BC斜率为-4/3
∴BC中垂线EF方程为:y-2=3/4(x-3.5)==>6x-8y-5=0
∴F(5/6,0)
|FC|=√[(2-5/6)^2+4^2]=25/6
(3)解析:在抛物线对称轴上肯定存在点P,即∠CBD平分线与中垂线交点P
Tan∠CBD=4/3
Tan∠CBD =2Tan(∠CBD/2)/[1-(Tan(∠CBD/2))^2]=4/3
解得Tan(∠CBD/2)=1/2
PD/BD=1/2==>PD=3/2
∴P(2,3/2)已赞同2| 评论
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式