若cos2α/sin(α-π/4)=-√2/2,则cosα+sinα的值为?
1个回答
2011-11-14 · 知道合伙人教育行家
关注
展开全部
cos2α/sin(α-π/4)=-√2/2
(cos^2α-sin^2α)/(sinαcosπ/4-cosαsinπ/4) = -√2/2
[(cosα+sinα)(cosα-sinα)] / [√2/2(sinα-cosα)] = -√2/2
-√2(cosα+sinα)(cosα-sinα) / (cosα-sinα) = -√2/2
-√2(cosα+sinα) = -√2/2
cosα+sinα = 1/2
(cos^2α-sin^2α)/(sinαcosπ/4-cosαsinπ/4) = -√2/2
[(cosα+sinα)(cosα-sinα)] / [√2/2(sinα-cosα)] = -√2/2
-√2(cosα+sinα)(cosα-sinα) / (cosα-sinα) = -√2/2
-√2(cosα+sinα) = -√2/2
cosα+sinα = 1/2
追问
sinαcosπ/4-cosαsinπ/4,请教一下!
追答
sin(α-π/4)
= (sinαcosπ/4-cosαsinπ/4)
= (sinα*√2/2-cosα*√2/2)
= √2/2(sinα-cosα)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询