求证sinx-cosx+1/sinx+cosx-1=1+sinx/cosx
1个回答
展开全部
(sinx-cosx+1)/(sinx+cosx-1)
=[2sin(x/2)cos(x/2)+2(sin(x/2))^2] / [ 2sin(x/2)cos(x/2)-2(sin(x/2))^2
=[sin(x/2) +cos(x/2)] /[cos(x/2) -sin(x/2)]
(1+sinx)/cosx=(sin(x/2)+cos(x/2))^2/[cos(x/2))^2-sin(x/2)^2]
=[sin(x/2)+cos(x/2)]/[cos(x/2)-sin(x/2)]
左=右
=[2sin(x/2)cos(x/2)+2(sin(x/2))^2] / [ 2sin(x/2)cos(x/2)-2(sin(x/2))^2
=[sin(x/2) +cos(x/2)] /[cos(x/2) -sin(x/2)]
(1+sinx)/cosx=(sin(x/2)+cos(x/2))^2/[cos(x/2))^2-sin(x/2)^2]
=[sin(x/2)+cos(x/2)]/[cos(x/2)-sin(x/2)]
左=右
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询