已知{An}是首项为A1,公比为q(q不等于1)的等比数列,其前n项和为Sn,且有S 5

已知{An}是首项为A1,公比为q(q不等于1)的等比数列,其前n项和为Sn,且有S5分之S10=32分之33,设bn=2q+Sn一求q的值二数列{bn}能否为等比数列?... 已知{An}是首项为A1,公比为q(q不等于1)的等比数列,其前n项和为Sn,且有S5分之S10=32分之33,设bn=2q+Sn
一求q 的值
二数列{bn}能否为等比数列?若能,请求出A1的值;若不能,请说明理由
展开
 我来答
匿名用户
2011-11-19
展开全部
解:(1)由S5分之S10=32分之33和Sn=A1(1-q*n)/(1-q)
得q=0.5
(2){bn}可以是等比数列。假设{bn}等比,则bn=b1q*(n-1)而由bn=2q+Sn得
bn=1+2A1-2A1/2*(n-1) 显然只要1+2A1=0即A1=-1/2即满足等比数列的
通项形式,故{bn}可以是等比
flashfan6
2011-11-19
知道答主
回答量:5
采纳率:0%
帮助的人:3.5万
展开全部
解:(1)∵(a6+a7+a8+a9+a10)/(a1+a2+a3+a4+a5)
=(a1*q^5+a2*q^5+a3*q^5+a4*q^5+a5*q^5)/(a1+a2+a3+a4+a5)
=q^5
∴S10/S5=(S5+a6+a7+a8+a9+a10)/S5=1+q^5
∴1+q^5=33/32 ,q=1/2
(2)能
bn=2*(1/2)+Sn=1+a1*(1-(1/2)^n)/(1-1/2)=1+2a1-2a1*(1/2)^n
∴只需1+2a1=0 ,a1=-1/2
此时 bn=(1/2)^n 为等比数列
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
鹤鶴鹤鹤鹤鹤
2011-11-19
知道答主
回答量:7
采纳率:0%
帮助的人:3.9万
展开全部
这么难的问题也有人问,真是服了你啦。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
asdfvw1
2011-11-19
知道答主
回答量:67
采纳率:0%
帮助的人:23.7万
展开全部
暂无解
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式