什么是矩阵的维度?

水果山猕猴桃
高能答主

2019-02-27 · 经不住似水流年,逃不过此间年少
水果山猕猴桃
采纳数:519 获赞数:110488

向TA提问 私信TA
展开全部

矩阵不讲维数,维数是线性空间的性质,空间的维数是指它的基所含向量的个数,一个矩阵不能组成线性空间,不能讲维数。

在数学中,矩阵的维数说法不一,并没有定义矩阵的维数, 线性空间才有维数, 所以这造成了两种解释:

1 矩阵的维数是其行向量(或列向量)生成的向量空间的维数;

2 指它的行数与列数 (一般编程人员喜欢这样定义, 因为他们关注的是数组的大小)。

你说的矩阵的秩,其实就是第1种,即矩阵的维数就是矩阵的秩。

矩阵的秩就是矩阵中非零子式的最高阶数,简单来说,就是把矩阵进行初等行变换之后有非零数的行数。

扩展资料:

在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。作为解决线性方程的工具,矩阵也有不短的历史。

成书最迟在东汉前期的《九章算术》中,用分离系数法表示线性方程组,得到了其增广矩阵。在消元过程中,使用的把某行乘以某一非零实数、从某行中减去另一行等运算技巧,相当于矩阵的初等变换

但那时并没有现今理解的矩阵概念,虽然它与现有的矩阵形式上相同,但在当时只是作为线性方程组的标准表示与处理方式。

矩阵正式作为数学中的研究对象出现,则是在行列式的研究发展起来后。逻辑上,矩阵的概念先于行列式,但在实际的历史上则恰好相反。

日本数学家关孝和(1683年)与微积分的发现者之一戈特弗里德·威廉·莱布尼茨(1693年)近乎同时地独立建立了行列式论。

其后行列式作为解线性方程组的工具逐步发展。1750年,加布里尔·克拉默发现了克莱姆法则

参考资料来源:百度百科-矩阵

参考资料来源:百度百科-维度

金科张君
2011-11-19
知道答主
回答量:28
采纳率:0%
帮助的人:3.8万
展开全部
我说说自己的理解

一个1×1的矩阵可以表示数轴上的一点,此矩阵是一维的;

一个2×2的矩阵,把其列向量看成平面上点得坐标,那么这个矩阵可以表示两个点,也可以看成从原点出发的两个向量,。如果这两个向量不平行,那么它们可以用来确定整个平面,此时这个2×2的矩阵就是二维的。如果那两个向量平行,矩阵就是一维的,就是楼上说的秩为1;

一个3×3的矩阵,可以表示成三维空间中的3个点,如果这三个点不在同一平面上,那么它们可以确定一个球,即可以表示整个三维空间,此时矩阵就是三维的;若三点共面,那么矩阵就是两维的;三点共线,矩阵一维的。【其实这个说法有很大漏洞,它是错误的,刚才忽然发现啦,看看就好,当做理解吧】

个人理解 ,很多疏漏,请指教。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2013-04-13
展开全部
请百度“向量空间的基和维”
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
zhouming_feng
推荐于2017-09-05 · TA获得超过881个赞
知道小有建树答主
回答量:1057
采纳率:100%
帮助的人:929万
展开全部
矩阵的行向量组成的线性空间的维数称为矩阵的行秩。矩阵的列向量组成的空间的维数成为矩阵的列秩。可以证明:对于任何矩阵有,行秩=列秩。由此,行秩和列秩统称为矩阵的秩。
矩阵的秩用R(A)表示。
矩阵的零空间指的是方程AX=0的解空间。
方程AX=0的所有解组成一个线性空间,这个线性空间称为解空间,也称为矩阵A的零空间。
矩阵的零空间的秩用N(A)表示。
dim表示的是空间维数,也就是表示该空间的矩阵的秩。因为维数就是用基向量的个数来定义的,而基向量的个数就等于矩阵的列向量的秩,也就是矩阵的秩。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 2条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式