数组有维度的分别,请问矩阵有维度的说法吗,还是矩阵
1个回答
展开全部
矩阵的行向量组成的线性空间的维数称为矩阵的行秩。矩阵的列向量组成的空间的维数成为矩阵的列秩。可以证明:对于任何矩阵有,行秩=列秩。由此,行秩和列秩统称为矩阵的秩。
矩阵的秩用R(A)表示。
矩阵的零空间指的是方程AX=0的解空间。
方程AX=0的所有解组成一个线性空间,这个线性空间称为解空间,也称为矩阵A的零空间。
矩阵的零空间的秩用N(A)表示。
dim表示的是空间维数,也就是表示该空间的矩阵的秩。因为维数就是用基向量的个数来定义的,而基向量的个数就等于矩阵的列向量的秩,也就是矩阵的秩。
矩阵的秩用R(A)表示。
矩阵的零空间指的是方程AX=0的解空间。
方程AX=0的所有解组成一个线性空间,这个线性空间称为解空间,也称为矩阵A的零空间。
矩阵的零空间的秩用N(A)表示。
dim表示的是空间维数,也就是表示该空间的矩阵的秩。因为维数就是用基向量的个数来定义的,而基向量的个数就等于矩阵的列向量的秩,也就是矩阵的秩。
拉索生物
2024-11-08 广告
2024-11-08 广告
苏州拉索生物芯片科技有限公司是国内首家实现高密度固相基因芯片自主研发、生产和商业化的企业,可提供包含芯片(可定制)、扫描设备、试剂、专业算法及配套软件在内的一体化固相基因芯片解决方案。...
点击进入详情页
本回答由拉索生物提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询