已知:如图在△ABC中,BAC=90° AB=AC.AM是过A点任意一条直线,BD⊥AM于D,CE⊥AM于E,
已知:如图在△ABC中,BAC=90°AB=AC.AM是过A点任意一条直线,BD⊥AM于D,CE⊥AM于E,求证:DE=BD-CE...
已知:如图在△ABC中,BAC=90° AB=AC.AM是过A点任意一条直线,BD⊥AM于D,CE⊥AM于E,求证:DE=BD-CE
展开
6个回答
展开全部
证明:因为AB=AC 所以角ABC=角ACB=45度,
设BC与AM交与N点,则角BND=角CNE ,又角CEN=角BDN=90度,故角DBN=角NCE,
所以角ABD=45度-角DBN 角BAD=90度-角ABD=45度+角DBN =角ACB+角NCE=角ACE
又AB=AC 角ADB=角AEC=90度 故三角形ABD全等于三角形CAE
则BD=AC,AD=CE
故:DE=AE-AD=BD-CE
设BC与AM交与N点,则角BND=角CNE ,又角CEN=角BDN=90度,故角DBN=角NCE,
所以角ABD=45度-角DBN 角BAD=90度-角ABD=45度+角DBN =角ACB+角NCE=角ACE
又AB=AC 角ADB=角AEC=90度 故三角形ABD全等于三角形CAE
则BD=AC,AD=CE
故:DE=AE-AD=BD-CE
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明如下:
因 角BAM+角MAC=90度, 角BAM+角ABD=90度, 故角MAC=角ABD
又因 角BDA=角AEC=90度
又因AB=AC
故三角形ABD与三角形CAE全等
故AD=CE, BD=AE
DE+CE=DE+AD=AE=BD
故DE+CE=BD
从而有DE=BD-CE
因 角BAM+角MAC=90度, 角BAM+角ABD=90度, 故角MAC=角ABD
又因 角BDA=角AEC=90度
又因AB=AC
故三角形ABD与三角形CAE全等
故AD=CE, BD=AE
DE+CE=DE+AD=AE=BD
故DE+CE=BD
从而有DE=BD-CE
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:∵∠BAC=∠BDA=90°.
∴∠ABD=∠CAE(同角的余角相等).
又∵AB=AC;∠BDA=∠AEC=90°.
∴⊿BDA≌⊿AEC(AAS),BD=AE;AD=CE.
∴DE=AE-AD=BD-CE.
∴∠ABD=∠CAE(同角的余角相等).
又∵AB=AC;∠BDA=∠AEC=90°.
∴⊿BDA≌⊿AEC(AAS),BD=AE;AD=CE.
∴DE=AE-AD=BD-CE.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
这个题的考点是:角边角定理
利用角边角定理,证明△ABC全等于△CAE ,就很好理解了吧?!
自己证明看看!
利用角边角定理,证明△ABC全等于△CAE ,就很好理解了吧?!
自己证明看看!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询