已知椭圆C:x2/a2+y2/b2=1(a>b>0)的离心率为1/2,且经过点P(1,3/2) 问:1.求椭圆的C的方程

2.设F是椭圆C的左焦点,判断以PF为直径的圆与以椭圆长轴为直径的圆的位置关系,并说明理由... 2.设F是椭圆C的左焦点,判断以PF为直径的圆与以椭圆长轴为直径的圆的位置关系,并说明理由 展开
良驹绝影
2011-11-24 · TA获得超过13.6万个赞
知道大有可为答主
回答量:2.8万
采纳率:80%
帮助的人:1.3亿
展开全部
1、e=c/a=1/2,则:a:c=2:1,即:a²:b²:c²=4:3:1。
设椭圆是:x²/a²+y²/b²=1即:x²/(4c²)+y²/(3c²)=1,以点(1,3/2)代入,得:c²=1/2,从而椭圆方程是:x²/2+y²/(3/2)=1

2、若F是椭圆的左焦点,设:PF=2m,则:PM=2a-2m【点M是椭圆右焦点】,以PF为直径的圆的圆心是C,且此圆的半径r=m,以椭圆长轴为直径的圆的圆心是O,且其半径是R=a,则两圆圆心距d=|CO|=(1/2)PM=a-m=R-r,此即表示两圆内切。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式