关于线性代数欧氏空间的证明。
证明:欧氏空间V中,若β与α₁,α₂,...,ὰm均正交,则β与α₁,α₂,...,ὰm的任一线性组合...
证明:欧氏空间V中,若β与α₁,α₂,...,ὰm均正交,则β与α₁,α₂,...,ὰm的任一线性组合(i=1~m)∑k̀iὰi 都正交。
展开
展开全部
设V是一个欧氏空间(n维实内积空间),f:v->v是一个映射. 如果对任意的a然后就利用这一性质来证明线性性。只需验证: (f(kx)-kf(x),f(kx)-kf
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
上海华然企业咨询
2024-10-30 广告
2024-10-30 广告
在上海华然企业咨询有限公司,我们深刻理解大模型测试对于确保数据准确性、提升业务效率及优化用户体验的重要性。我们的测试团队专注于对大模型进行全面而细致的评估,涵盖性能稳定性、预测准确性、响应速度及兼容性等多个维度。通过模拟真实业务场景,我们力...
点击进入详情页
本回答由上海华然企业咨询提供
展开全部
由已知 (β,αi) = 0, i=1,2,...,m
所以 (β, ∑kiαi) = ∑(β,kiαi) = ∑ki(β,αi) = 0.
所以 β 与 ∑kiαi 正交.
所以 (β, ∑kiαi) = ∑(β,kiαi) = ∑ki(β,αi) = 0.
所以 β 与 ∑kiαi 正交.
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询