在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值。绝对值用“||”来表示。在数轴上,表示一个数a的点到数b的点之间的距离的值,叫做a-b的绝对值,记作|a-b|。
在数轴上,一个数到原点的距离叫做该数的绝对值.如:5指在数轴上表示数5的点与原点的距离,这个距离是5,所以5的绝对值是5。
非负数(正数和0,)非负数的绝对值是它本身,非正数的绝对值是它的相反数。互为相反数的两个数的绝对值相等。a的绝对值用“|a |”表示.读作“a的绝对值”。
实数a的绝对值永远是非负数,即|a |≥0。互为相反数的两个数的绝对值相等,即|-a|=|a|。若a为正数,则满足|x|=a的x有两个值±a,如|x|=3,,则x=±3.
扩展资料
绝对值的有关性质:
①任何有理数的绝对值都是大于或等于0的数,这是绝对值的非负性;
②绝对值等于0的数只有一个,就是0;
③绝对值等于同一个正数的数有两个,这两个数互为相反数;
④互为相反数的两个数的绝对值相等。
2024-12-11 广告
定义:
绝对值是指一个数在 数轴上所对应点到原点的 距离叫做这个数的绝对值,绝对值用“ | |”来表示。|b-a|或|a-b|表示数轴上表示a的点和表示b的点的距离。 (零绝对值0)
几何意义:
在数轴上,一个数到 原点的距离叫做该数的绝对值。|a-b|表示数轴上表示a的点和表示b的点的距离。
代数意义:
非负数〔 正数和0〕的绝对值是它本身, 非正数〔 负数〕的绝对值是它的 相反数。
a的绝对值用“|a|”表示.读作“a的绝对值”。
实数a的绝对值永远是非负数,即|a |≥0。互为相反数的两个数的绝对值相等,即|-a|=|a|(因为在 数轴上它们到原点的距离相等)。
若a为正数,则满足|x|=a的x有两个值±a,如|x|=3,则x=±3。
绝对值不等式:
解绝对值不等式必须设法化去式中的 绝对值符号,转化为一般代数式类型来解;
证明绝对值不等式主要有两种方法:
去掉绝对值符号转化为一般的不等式证明: 换元法、 讨论法、平方法;
利用不等式:|a|-|b|≦|a+b|≦|a|+|b|,用这个方法要对绝对值内的式子进行 分拆组合、添项减项、使要证的式子与已知的式子联系起来。
绝对值是什么,进来告诉你
用代数式表示为:
|a|=a(a>0)
|a|=-a(a<0)
|a|=0(a=0)
在数轴上,一个数的绝对值表示为代表这个数的点到原点的距离。如:|-5|表示在数轴上代表-5 的点与原点的距离,即|-5|=5。
定义:
绝对值是指一个数在 数轴上所对应点到原点的 距离叫做这个数的绝对值,绝对值用“ | |”来表示。|b-a|或|a-b|表示数轴上表示a的点和表示b的点的距离。 (零绝对值0)
几何意义:
在数轴上,一个数到 原点的距离叫做该数的绝对值。|a-b|表示数轴上表示a的点和表示b的点的距离。
扩展资料
|-14|+|-16|+|+20|= 50
绝对值里面的数都是正数 所以是 14 +16 + 20 = 50
|-12|×|-2.5|-|-25|= 5
12 * 2.5 - 25 = 5 绝对值里面的数都是正数 先算乘法!
因为|2a-3|+|b+2|=0 所以|2a-3|=0 |b+2|=0 所以2a-3 = 0 a=1.5
b+2=0 b= -2 所以a²+2a+b = 1.5的平方 + 2*1.5 + (-2) = 3.25
参考资料:百度百科——绝对值