用数学归纳法证明(1*2^2-2*3^2)+(3*4^2-4*5^2)+...+[(2n-1)*(2n)^2-2n(2n+1)^2] =-n(n+1)(4n+3)

flysoulorc
2011-11-26 · 超过10用户采纳过TA的回答
知道答主
回答量:37
采纳率:0%
帮助的人:25.6万
展开全部
按照套路来就行。
1)n=1时,显然成立
2)设n=k时,等式成立,
n=k+1时,(1*2^2-2*3^2)+(3*4^2-4*5^2)+...+[(2k-1)*(2k)^2-2k(2k+1)^2]+[(2k+1)*(2k+2)^2-2(k+2)(2n+3)^2] =-k(k+1)(4k+3)+[(2k+1)*(2k+2)^2-2(k+2)(2n+3)^2]=-(k+1)(k+2)(4n+7)
(这一步硬算就行)
故对所有n=k成立。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式