(2009•江西)如图1,在等腰梯形ABCD中,AD∥BC,E是AB的中点,过点E作EF∥BC交CD于点F.AB=4,BC=6
,∠B=60度.(1)求点E到BC的距离;(2)点P为线段EF上的一个动点,过P作PM⊥EF交BC于点M,过M作MN∥AB交折线ADC于点N,连接PN,设EP=x.①当点...
,∠B=60度.
(1)求点E到BC的距离;
(2)点P为线段EF上的一个动点,过P作PM⊥EF交BC于点M,过M作MN∥AB交折线ADC于点N,连接PN,设EP=x.
①当点N在线段AD上时(如图2),△PMN的形状是否发生改变?若不变,求出△PMN的周长;若改变,请说明理由;
②当点N在线段DC上时(如图3),是否存在点P,使△PMN为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由.
图你们在百度里可以搜到,但是那个解析太不完整,谁能给我全部解析?青优网只有VIP客户才可以看解析,天哪,谁救就me!作业!HELP!SOS!PLEASE! 展开
(1)求点E到BC的距离;
(2)点P为线段EF上的一个动点,过P作PM⊥EF交BC于点M,过M作MN∥AB交折线ADC于点N,连接PN,设EP=x.
①当点N在线段AD上时(如图2),△PMN的形状是否发生改变?若不变,求出△PMN的周长;若改变,请说明理由;
②当点N在线段DC上时(如图3),是否存在点P,使△PMN为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由.
图你们在百度里可以搜到,但是那个解析太不完整,谁能给我全部解析?青优网只有VIP客户才可以看解析,天哪,谁救就me!作业!HELP!SOS!PLEASE! 展开
2个回答
展开全部
解:(1)如图1,过点E作EG⊥BC于点G.
∵E为AB的中点,
∴BE=12AB=2
在Rt△EBG中,∠B=60°,∴∠BEG=30度.
∴BG=12BE=1,EG=22-12=
3
即点E到BC的距离为3
(2)①当点N在线段AD上运动时,△PMN的形状不发生改变.
∵PM⊥EF,EG⊥EF,
∴PM∥EG,又EF∥BC,
∴四边形EPMG为平行四边形,
∴EP=GM,PM=EG=3
同理MN=AB=4.
如图2,过点P作PH⊥MN于H,
∵MN∥AB,
∴∠NMC=∠B=60°,又∠PMC=90°,
∴∠PMH=∠PMC-∠NMC=30°.
∴PH=12PM=32
∴MH=PM•cos30°=32
则NH=MN-MH=4-32=
52
在Rt△PNH中,PN=NH2+PH2=
(
52)2+(
32)2=
7
∴△PMN的周长=PM+PN+MN=3+
7+4
②当点N在线段DC上运动时,△PMN的形状发生改变,但△MNC恒为等边三角形.
当PM=PN时,如图3,作PR⊥MN于R,则MR=NR.
类似①,PM=3,∠PMR=30°,
MR=PMcos30°=3×32=32,
∴MN=2MR=3.
∵△MNC是等边三角形,
∴MC=MN=3.
此时,x=EP=GM=BC-BG-MC=6-1-3=2.
当MP=MN时,
∵EG=3,
∴MP=MN=3,
∵∠B=∠C=60°,
∴△MNC是等边三角形,
∴MC=MN=MP=3(如图4),
此时,x=EP=GM=6-1-3=5-
3,
当NP=NM时,如图5,∠NPM=∠PMN=30度.
则∠PNM=120°,又∠MNC=60°,
∴∠PNM+∠MNC=180度.
因此点P与F重合,△PMC为直角三角形.
∴MC=PM•tan30°=1.
此时,x=EP=GM=6-1-1=4.
综上所述,当x=2或4或(5-3)时,△PMN为等腰三角形.
根号打不出来
∵E为AB的中点,
∴BE=12AB=2
在Rt△EBG中,∠B=60°,∴∠BEG=30度.
∴BG=12BE=1,EG=22-12=
3
即点E到BC的距离为3
(2)①当点N在线段AD上运动时,△PMN的形状不发生改变.
∵PM⊥EF,EG⊥EF,
∴PM∥EG,又EF∥BC,
∴四边形EPMG为平行四边形,
∴EP=GM,PM=EG=3
同理MN=AB=4.
如图2,过点P作PH⊥MN于H,
∵MN∥AB,
∴∠NMC=∠B=60°,又∠PMC=90°,
∴∠PMH=∠PMC-∠NMC=30°.
∴PH=12PM=32
∴MH=PM•cos30°=32
则NH=MN-MH=4-32=
52
在Rt△PNH中,PN=NH2+PH2=
(
52)2+(
32)2=
7
∴△PMN的周长=PM+PN+MN=3+
7+4
②当点N在线段DC上运动时,△PMN的形状发生改变,但△MNC恒为等边三角形.
当PM=PN时,如图3,作PR⊥MN于R,则MR=NR.
类似①,PM=3,∠PMR=30°,
MR=PMcos30°=3×32=32,
∴MN=2MR=3.
∵△MNC是等边三角形,
∴MC=MN=3.
此时,x=EP=GM=BC-BG-MC=6-1-3=2.
当MP=MN时,
∵EG=3,
∴MP=MN=3,
∵∠B=∠C=60°,
∴△MNC是等边三角形,
∴MC=MN=MP=3(如图4),
此时,x=EP=GM=6-1-3=5-
3,
当NP=NM时,如图5,∠NPM=∠PMN=30度.
则∠PNM=120°,又∠MNC=60°,
∴∠PNM+∠MNC=180度.
因此点P与F重合,△PMC为直角三角形.
∴MC=PM•tan30°=1.
此时,x=EP=GM=6-1-1=4.
综上所述,当x=2或4或(5-3)时,△PMN为等腰三角形.
根号打不出来
展开全部
证明:(1)∵四边形ABCD为等腰梯形,
∴AB=CD,∠A=∠D.
∵M为AD的中点,
∴AM=DM.
∴△ABM≌△DCM.
∴BM=CM.
∵E、F、N分别是MB、CM、BC的中点,
∴EN= 1/2MC,FN= 1/2MB,ME= 1/2MB,MF= 1/2MC.
∴EN=FN=FM=EM.
∴四边形ENFM是菱形.
解:(2)结论:等腰梯形ABCD的高是底边BC的一半.
理由:连接MN,
∵BM=CM,BN=CN,
∴MN⊥BC.
∵AD∥BC,
∴MN⊥AD.
∴MN是梯形ABCD的高
又∵四边形MENF是正方形,
∴△BMC为直角三角形.
又∵N是BC的中点,
∴MN= 1/2BC.
∴AB=CD,∠A=∠D.
∵M为AD的中点,
∴AM=DM.
∴△ABM≌△DCM.
∴BM=CM.
∵E、F、N分别是MB、CM、BC的中点,
∴EN= 1/2MC,FN= 1/2MB,ME= 1/2MB,MF= 1/2MC.
∴EN=FN=FM=EM.
∴四边形ENFM是菱形.
解:(2)结论:等腰梯形ABCD的高是底边BC的一半.
理由:连接MN,
∵BM=CM,BN=CN,
∴MN⊥BC.
∵AD∥BC,
∴MN⊥AD.
∴MN是梯形ABCD的高
又∵四边形MENF是正方形,
∴△BMC为直角三角形.
又∵N是BC的中点,
∴MN= 1/2BC.
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询