•江西)如图1,在等腰梯形ABCD中,AD∥BC,E是AB的中点,过点E作EF∥BC交CD于点F.AB=4,
(2009•江西)如图1,在等腰梯形ABCD中,AD∥BC,E是AB的中点,过点E作EF∥BC交CD于点F.AB=4,BC=6,∠B=60度.(1)求点E到B...
(2009•江西)如图1,在等腰梯形ABCD中,AD∥BC,E是AB的中点,过点E作EF∥BC交CD于点F.AB=4,BC=6,∠B=60度.
(1)求点E到BC的距离;
(2)点P为线段EF上的一个动点,过P作PM⊥EF交BC于点M,过M作MN∥AB交折线ADC于点N,连接PN,设EP=x.
①当点N在线段AD上时(如图2),△PMN的形状是否发生改变?若不变,求出△PMN的周长;若改变,请说明理由;
②当点N在线段DC上时(如图3),是否存在点P,使△PMN为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由.急急急????? 展开
(1)求点E到BC的距离;
(2)点P为线段EF上的一个动点,过P作PM⊥EF交BC于点M,过M作MN∥AB交折线ADC于点N,连接PN,设EP=x.
①当点N在线段AD上时(如图2),△PMN的形状是否发生改变?若不变,求出△PMN的周长;若改变,请说明理由;
②当点N在线段DC上时(如图3),是否存在点P,使△PMN为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由.急急急????? 展开
4个回答
展开全部
①0《X《1时,C△PMN不变,答案为4+根号3+根号7。。。△PMN为钝角三角形
②PM不变,PM=根号3,使△PMN为等腰三角形,即PM=MN或者PM=PN
⑴PM=MN=根号3(N在CF上)
∵MN=根号3,且△MNC为等边三角形。
∴MC=MN=根号3
过E点作垂线交BC于Q
经计算,BQ=1
∴EP=BC-MC-BQ
=6-1-根号3
=5-根号3
⑵PM=PN=根号3
过程唔米几识写,不过答案为2(提示:N在FD上)
图最好分开画,或者画大一点。
②PM不变,PM=根号3,使△PMN为等腰三角形,即PM=MN或者PM=PN
⑴PM=MN=根号3(N在CF上)
∵MN=根号3,且△MNC为等边三角形。
∴MC=MN=根号3
过E点作垂线交BC于Q
经计算,BQ=1
∴EP=BC-MC-BQ
=6-1-根号3
=5-根号3
⑵PM=PN=根号3
过程唔米几识写,不过答案为2(提示:N在FD上)
图最好分开画,或者画大一点。
展开全部
第二题的第二问有三个答案 2或4或5-根号三 。【再问一下,这是初三的题?我初二的咦、、老师就让我们写,。。。。不会】
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
图呢
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询