【数学题】已知,如图所示Rt△ABC中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与AC、AB分别交于点
已知,如图所示Rt△ABC中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与AC、AB分别交于点D、E,且∠CBD=∠A.问:(1)判断直线BD与圆O的位置关...
已知,如图所示 Rt△ABC中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与AC、AB分别交于点D、E,且∠CBD=∠A.问:(1)判断直线BD与圆O的位置关系,并证明你的结论(2)若AD:AO=8:5,BC=2,求BD的长
展开
2个回答
展开全部
(1)连接OD.证直线与圆相切,即证BD⊥OD.由∠CBD+∠CDB=90°,∠CBD=∠A=∠ODA,可得∠ODA+∠CDB=90°.根据平角定义得证;(2)即求圆的半径求解.连接DE,则∠ADE=90°.在Rt△BCA中,∠CDB=∠A=∠ABD,得∠A=30°.从而在△ADE中利用三角函数求解.
解答:解:(1)直线BD与⊙O相切. (1分)
证明:如图1,连接OD. (2分)
∵OA=OD,∴∠A=∠ADO. (3分)
∵∠C=90°,
∴∠CBD+∠CDB=90°
又∵∠CBD=∠A,(5分)
∴∠ADO+∠CDB=90°,
∴∠ODB=180°-(∠ADO+∠CDB)=90°.
∴直线BD与⊙O相切. (6分)
(2)连OD、DE.
∵AD=BD,
∴∠A=∠DBA. (7分)
在Rt△BDC中,
∵∠C=90°,∠CBD=∠A=∠DBA,
∴3∠A=90°,即有∠A=30°. (8分)
由tan∠A=DEAD,得DE=AD•tan30°=2×33=233.(10分)
又∠DOE=60°,OD=OE,
∴△DOE为等边三角形,
∴OD=DE=233. (10分)
即⊙O的半径r=OD=233,
故⊙O的面积S=πr2=4π3. (12分)
解答:解:(1)直线BD与⊙O相切. (1分)
证明:如图1,连接OD. (2分)
∵OA=OD,∴∠A=∠ADO. (3分)
∵∠C=90°,
∴∠CBD+∠CDB=90°
又∵∠CBD=∠A,(5分)
∴∠ADO+∠CDB=90°,
∴∠ODB=180°-(∠ADO+∠CDB)=90°.
∴直线BD与⊙O相切. (6分)
(2)连OD、DE.
∵AD=BD,
∴∠A=∠DBA. (7分)
在Rt△BDC中,
∵∠C=90°,∠CBD=∠A=∠DBA,
∴3∠A=90°,即有∠A=30°. (8分)
由tan∠A=DEAD,得DE=AD•tan30°=2×33=233.(10分)
又∠DOE=60°,OD=OE,
∴△DOE为等边三角形,
∴OD=DE=233. (10分)
即⊙O的半径r=OD=233,
故⊙O的面积S=πr2=4π3. (12分)
参考资料: http://www.jyeoo.com/Math/Ques/Detail/c26f5c5b-8958-4cd8-b81f-afda841273f0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询