设A+B都是n阶对称矩阵,E+AB可逆,证明(E+AB)^-1A也是对称矩阵。 式子解释:(E+AB)的逆矩阵乘A 谢谢~
2个回答
展开全部
证明:
[(E+AB)^-1A]^T (解释:^T表示转置,楼主懂得,证明矩阵对称的思路:就是证明转置矩阵是否等于矩阵本身)
另外,题中:A+B都是n阶对称矩阵。不对吧,应该是A和B都是n阶对称矩阵
[(E+AB)^-1A]^T
=A^T[(E+AB)^-1]^T
=A[(E+AB)^T]^-1
=A(E+B^TA^T)^-1
=A(E+BA)^-1
=[(A^-1)^-1](E+BA)^-1
=[(E+BA)A^-1]^-1
=(A^-1+B)^-1
而
(E+AB)^-1A
=(E+AB)^-1(A^-1)^-1
=[A^-1(E+AB)]^-1
=(A^-1+B)^-1
∴(E+AB)^-1A=[(E+AB)^-1A]^T
∴(E+AB)^-1A也是对称矩阵
希望对你有帮助,望采纳,谢谢~
[(E+AB)^-1A]^T (解释:^T表示转置,楼主懂得,证明矩阵对称的思路:就是证明转置矩阵是否等于矩阵本身)
另外,题中:A+B都是n阶对称矩阵。不对吧,应该是A和B都是n阶对称矩阵
[(E+AB)^-1A]^T
=A^T[(E+AB)^-1]^T
=A[(E+AB)^T]^-1
=A(E+B^TA^T)^-1
=A(E+BA)^-1
=[(A^-1)^-1](E+BA)^-1
=[(E+BA)A^-1]^-1
=(A^-1+B)^-1
而
(E+AB)^-1A
=(E+AB)^-1(A^-1)^-1
=[A^-1(E+AB)]^-1
=(A^-1+B)^-1
∴(E+AB)^-1A=[(E+AB)^-1A]^T
∴(E+AB)^-1A也是对称矩阵
希望对你有帮助,望采纳,谢谢~
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询