如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α。将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.
(1)求证:△COD是等边三角形(2)当α=150°时,试判断△AOD的形状,并说明理由(3)探究:当∠BOC为多少度时,△AOD是等腰三角形...
(1)求证:△COD是等边三角形
(2)当α=150°时,试判断△AOD的形状,并说明理由
(3)探究:当∠BOC为多少度时,△AOD是等腰三角形 展开
(2)当α=150°时,试判断△AOD的形状,并说明理由
(3)探究:当∠BOC为多少度时,△AOD是等腰三角形 展开
7个回答
2011-11-28
展开全部
看看这个高手的解答
解:1)因为△ADC≌△BOC
所以OC=CD,∠BCO=∠ACD,
又∠BCO+∠ACO=60,
所以∠OCD=∠ACO+∠ACD=60
所以△COD是等边三角形
2)由△ADC≌△BOC
所以∠ADC=∠BOC=150,
所以∠ADO=∠ADC-∠ODC=150-60=90
因为∠AOB=110°,α=150度,
所以∠AOC=360-110-150=100
所以∠AOD=100-∠COD=100-60=40
所以△AOD是直角三角形
3)∠ADO=α-60,∠AOD=360-110-α-60=190-α
分三种情况,
若AO=OD
2(α-60)+(190-α)=180,
α=110
若AO=AD
α-60=190-α,
α=125
若AD=OD
(α-60)+2(190-α)=180,
http://zhidao.baidu.com/question/219783733.html?an=0&si=1
解:1)因为△ADC≌△BOC
所以OC=CD,∠BCO=∠ACD,
又∠BCO+∠ACO=60,
所以∠OCD=∠ACO+∠ACD=60
所以△COD是等边三角形
2)由△ADC≌△BOC
所以∠ADC=∠BOC=150,
所以∠ADO=∠ADC-∠ODC=150-60=90
因为∠AOB=110°,α=150度,
所以∠AOC=360-110-150=100
所以∠AOD=100-∠COD=100-60=40
所以△AOD是直角三角形
3)∠ADO=α-60,∠AOD=360-110-α-60=190-α
分三种情况,
若AO=OD
2(α-60)+(190-α)=180,
α=110
若AO=AD
α-60=190-α,
α=125
若AD=OD
(α-60)+2(190-α)=180,
http://zhidao.baidu.com/question/219783733.html?an=0&si=1
展开全部
解:(1)∵△BOC≌△ADC,
∴OC=DC.--(1分)
∵∠OCD=60°,
∴△OCD是等边三角形.--(1分)
(2)△AOD是Rt△.--(1分)
理由如下:
∵△OCD是等边三角形,
∴∠ODC=60°,
∵△BOC≌△ADC,∠α=150°,
∴∠ADC=∠BOC=∠α=150°,
∴∠ADO=∠ADC-∠ODC=150°-60°=90°,
∴△AOD是Rt△.--(2分)
(3)∵△OCD是等边三角形,
∴∠COD=∠ODC=60°.
∵∠AOB=110°,∠ADC=∠BOC=α,
∴∠AOD=360°-∠AOB-∠BOC-∠COD=360°-110°-α-60°=190°-α,
∠ADO=∠ADC-∠ODC=α-60°,
∴∠OAD=180°-∠AOD-∠ADO=180°-(190°-α)-(α-60°)=50°.
①当∠AOD=∠ADO时,190°-α=α-60°,
∴α=125°.--(2分)
②当∠AOD=∠OAD时,190°-α=50°,
∴α=140°.--(2分)
③当∠ADO=∠OAD时,
α-60°=50°,
∴α=110°.--(2分)
综上所述:当α=110°或125°或140°时,△AOD是等腰三角形.--(1分)
∴OC=DC.--(1分)
∵∠OCD=60°,
∴△OCD是等边三角形.--(1分)
(2)△AOD是Rt△.--(1分)
理由如下:
∵△OCD是等边三角形,
∴∠ODC=60°,
∵△BOC≌△ADC,∠α=150°,
∴∠ADC=∠BOC=∠α=150°,
∴∠ADO=∠ADC-∠ODC=150°-60°=90°,
∴△AOD是Rt△.--(2分)
(3)∵△OCD是等边三角形,
∴∠COD=∠ODC=60°.
∵∠AOB=110°,∠ADC=∠BOC=α,
∴∠AOD=360°-∠AOB-∠BOC-∠COD=360°-110°-α-60°=190°-α,
∠ADO=∠ADC-∠ODC=α-60°,
∴∠OAD=180°-∠AOD-∠ADO=180°-(190°-α)-(α-60°)=50°.
①当∠AOD=∠ADO时,190°-α=α-60°,
∴α=125°.--(2分)
②当∠AOD=∠OAD时,190°-α=50°,
∴α=140°.--(2分)
③当∠ADO=∠OAD时,
α-60°=50°,
∴α=110°.--(2分)
综上所述:当α=110°或125°或140°时,△AOD是等腰三角形.--(1分)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:(1)∵△BOC≌△ADC,
∴OC=DC.--(1分)
∵∠OCD=60°,
∴△OCD是等边三角形.--(1分)
(2)△AOD是Rt△.--(1分)
理由如下:
∵△OCD是等边三角形,
∴∠ODC=60°,
∵△BOC≌△ADC,∠α=150°,
∴∠ADC=∠BOC=∠α=150°,
∴∠ADO=∠ADC-∠ODC=150°-60°=90°,
∴△AOD是Rt△.--(2分)
(3)∵△OCD是等边三角形,
∴∠COD=∠ODC=60°.
∵∠AOB=110°,∠ADC=∠BOC=α,
∴∠AOD=360°-∠AOB-∠BOC-∠COD=360°-110°-α-60°=190°-α,
∠ADO=∠ADC-∠ODC=α-60°,
∴∠OAD=180°-∠AOD-∠ADO=180°-(190°-α)-(α-60°)=50°.
①当∠AOD=∠ADO时,190°-α=α-60°,
∴α=125°.--(2分)
②当∠AOD=∠OAD时,190°-α=50°,
∴α=140°.--(2分)
③当∠ADO=∠OAD时,
α-60°=50°,
∴α=110°.--(2分)
综上所述:当α=110°或125°或140°时,△AOD是等腰三角形.--(1分)
∴OC=DC.--(1分)
∵∠OCD=60°,
∴△OCD是等边三角形.--(1分)
(2)△AOD是Rt△.--(1分)
理由如下:
∵△OCD是等边三角形,
∴∠ODC=60°,
∵△BOC≌△ADC,∠α=150°,
∴∠ADC=∠BOC=∠α=150°,
∴∠ADO=∠ADC-∠ODC=150°-60°=90°,
∴△AOD是Rt△.--(2分)
(3)∵△OCD是等边三角形,
∴∠COD=∠ODC=60°.
∵∠AOB=110°,∠ADC=∠BOC=α,
∴∠AOD=360°-∠AOB-∠BOC-∠COD=360°-110°-α-60°=190°-α,
∠ADO=∠ADC-∠ODC=α-60°,
∴∠OAD=180°-∠AOD-∠ADO=180°-(190°-α)-(α-60°)=50°.
①当∠AOD=∠ADO时,190°-α=α-60°,
∴α=125°.--(2分)
②当∠AOD=∠OAD时,190°-α=50°,
∴α=140°.--(2分)
③当∠ADO=∠OAD时,
α-60°=50°,
∴α=110°.--(2分)
综上所述:当α=110°或125°或140°时,△AOD是等腰三角形.--(1分)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:(1)证明:∵将△BOC绕点C按顺时针方向旋转60°得△ADC,
∴△BOC≌△ADC,∠OCD=60°,
∴CO=CD.
∴△COD是等边三角形.
(2)△AOD为直角三角形,
∵△ADC≌△BOC,
∴DA=OB=5,
∵△COD是等边三角形,
∴OD=OC=4,又OA=3,
∴DA2=OA2+OD2,
∴△AOD为直角三角形.
(3)因为△AOD是等腰三角形,
所以分三种情况:①∠AOD=∠ADO②∠ODA=∠OAD③∠AOD=∠DAO
∵∠AOB=110°,∠COD=60°,
∴∠BOC=190°-∠AOD,
而∠BOC=∠ADC=∠ADO+∠CDO
由①∠AOD=∠ADO可得∠BOC=∠AOD+60°,
求得α=125°;
由②∠ODA=∠OAD可得∠BOC=150°-12∠AOD
求得α=110°;
由③∠AOD=∠DAO可得∠BOC=240°-2∠AOD,
求得α=140°;
综上可知α=125°、α=110°或α=140°.
∴△BOC≌△ADC,∠OCD=60°,
∴CO=CD.
∴△COD是等边三角形.
(2)△AOD为直角三角形,
∵△ADC≌△BOC,
∴DA=OB=5,
∵△COD是等边三角形,
∴OD=OC=4,又OA=3,
∴DA2=OA2+OD2,
∴△AOD为直角三角形.
(3)因为△AOD是等腰三角形,
所以分三种情况:①∠AOD=∠ADO②∠ODA=∠OAD③∠AOD=∠DAO
∵∠AOB=110°,∠COD=60°,
∴∠BOC=190°-∠AOD,
而∠BOC=∠ADC=∠ADO+∠CDO
由①∠AOD=∠ADO可得∠BOC=∠AOD+60°,
求得α=125°;
由②∠ODA=∠OAD可得∠BOC=150°-12∠AOD
求得α=110°;
由③∠AOD=∠DAO可得∠BOC=240°-2∠AOD,
求得α=140°;
综上可知α=125°、α=110°或α=140°.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
—'''把她说得意见谅解释然则在情绪言论语录取代码子昂扬扬州郡王厚重庆幸福气息息相关
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-01-10
展开全部
(1)∠DCO=60° OC=OD 所以 △COD是等边三角形(看不懂以为不可能的条件是你想错了)
(2)直角三角形(求出∠ADO的度数是90° 别忘了证明它不是等边三角形即没有两个内角互等)
(3)110°125°140° 考虑三种情况 AO=AD AO=DO AD=OD
(2)直角三角形(求出∠ADO的度数是90° 别忘了证明它不是等边三角形即没有两个内角互等)
(3)110°125°140° 考虑三种情况 AO=AD AO=DO AD=OD
参考资料: 额 好多试卷有这题 也算挺简单的
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询