在三角形ABC中,sinA=(sinB+sinC)/(cosB+cosC),试判断三角形的形状
2个回答
展开全部
sinA=(sinB+sinC)/(cosB+cosC),
sinAcosB+sinAcosC=sinB+sinC
1/2[sin(A+B)+sin(A-B)]+1/2[sin(A+C)+sin(A-C)]=sinB+sinC
sin(A-B)+sin(A-C)=sinB+sinC
2sin((2A-B-C)/2)cos((C-B)/2)=2sin((B+C)/2)cos((B-C)/2)
(1)cos((B-C)/2)=0时
B-C=π,不合题意,舍去
(2)(2A-B-C)/2=(B+C)/2时,
A=π/2
(3)(2A-B-C)/2=π(B+C)/2时,
A=π,不合题意,舍去
答:三角形ABC直角三角形
sinAcosB+sinAcosC=sinB+sinC
1/2[sin(A+B)+sin(A-B)]+1/2[sin(A+C)+sin(A-C)]=sinB+sinC
sin(A-B)+sin(A-C)=sinB+sinC
2sin((2A-B-C)/2)cos((C-B)/2)=2sin((B+C)/2)cos((B-C)/2)
(1)cos((B-C)/2)=0时
B-C=π,不合题意,舍去
(2)(2A-B-C)/2=(B+C)/2时,
A=π/2
(3)(2A-B-C)/2=π(B+C)/2时,
A=π,不合题意,舍去
答:三角形ABC直角三角形
2012-10-03
展开全部
sinA=(sinB+sinC)/(cosB+cosC),
sinAcosB+sinAcosC=sinB+sinC
1/2[sin(A+B)+sin(A-B)]+1/2[sin(A+C)+sin(A-C)]=sinB+sinC
sin(A-B)+sin(A-C)=sinB+sinC
2sin((2A-B-C)/2)cos((C-B)/2)=2sin((B+C)/2)cos((B-C)/2)
(1)cos((B-C)/2)=0时
B-C=π,不合题意,舍去
(2)(2A-B-C)/2=(B+C)/2时,
A=π/2
(3)(2A-B-C)/2=π(B+C)/2时,
A=π,不合题意,舍去
答:三角形ABC直角三角形
sinAcosB+sinAcosC=sinB+sinC
1/2[sin(A+B)+sin(A-B)]+1/2[sin(A+C)+sin(A-C)]=sinB+sinC
sin(A-B)+sin(A-C)=sinB+sinC
2sin((2A-B-C)/2)cos((C-B)/2)=2sin((B+C)/2)cos((B-C)/2)
(1)cos((B-C)/2)=0时
B-C=π,不合题意,舍去
(2)(2A-B-C)/2=(B+C)/2时,
A=π/2
(3)(2A-B-C)/2=π(B+C)/2时,
A=π,不合题意,舍去
答:三角形ABC直角三角形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询