2个回答
展开全部
a(n+1)=(1+1/n)an+1/n
a(n+1)=(n+1)an/n+1/n
na(n+1)=(n+1)an+1
a(n+1)/(n+1)=an/n+1/n(n+1)
a(n+1)/(n+1)-an/n=1/n(n+1)
a(n+1)/(n+1)-an/n=1/n(n+1)
..........
a3/3-a2/2=1/2*3
a2/2-a1/1=1/1*2
以上等式相加得
a(n+1)/(n+1)-a1/1=1/1*2+1/2*3+.........+1/n(n+1)
a(n+1)/(n+1)-a1=1-1/2+1/2-1/3+.......+1/n-1/(n+1)
a(n+1)/(n+1)-a1=1-1/(n+1)
a(n+1)/(n+1)-a1=n/(n+1)
a(n+1)/(n+1)-1=n/(n+1)
a(n+1)/(n+1)=n/(n+1)+1
a(n+1)/(n+1)=(n+n+1)/(n+1)
a(n+1)/(n+1)=(2n+1)/(n+1)
a(n+1)/(n+1)=[(2n+2)-1]/(n+1)
a(n+1)/(n+1)=[2(n+1)-1]/(n+1)
所以an/n=(2n-1)/n
即bn=an/n=(2n-1)/n
a(n+1)=(n+1)an/n+1/n
na(n+1)=(n+1)an+1
a(n+1)/(n+1)=an/n+1/n(n+1)
a(n+1)/(n+1)-an/n=1/n(n+1)
a(n+1)/(n+1)-an/n=1/n(n+1)
..........
a3/3-a2/2=1/2*3
a2/2-a1/1=1/1*2
以上等式相加得
a(n+1)/(n+1)-a1/1=1/1*2+1/2*3+.........+1/n(n+1)
a(n+1)/(n+1)-a1=1-1/2+1/2-1/3+.......+1/n-1/(n+1)
a(n+1)/(n+1)-a1=1-1/(n+1)
a(n+1)/(n+1)-a1=n/(n+1)
a(n+1)/(n+1)-1=n/(n+1)
a(n+1)/(n+1)=n/(n+1)+1
a(n+1)/(n+1)=(n+n+1)/(n+1)
a(n+1)/(n+1)=(2n+1)/(n+1)
a(n+1)/(n+1)=[(2n+2)-1]/(n+1)
a(n+1)/(n+1)=[2(n+1)-1]/(n+1)
所以an/n=(2n-1)/n
即bn=an/n=(2n-1)/n
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询