4个回答
展开全部
在统计学中对变量进行线性回归分析,采用最小二乘法进行参数估计时,R平方为回归平方和与总离差平方和的比值,表示总离差平方和中可以由回归平方和解释的比。
这一比例越大越好,模型越精确,回归效果越显著。R平方介于0~1之间,越接近1,回归拟合效果越好,一般认为超过0.8的模型拟合优度比较高。
扩展资料
R平方越高,模型越适合您的数据。 在心理调查或研究中,我们通常发现低R平方值低于0.5。 这是因为我们试图预测人类行为,预测人类并不容易。
在这些情况下,如果R平方值很低,但有统计学上显着的独立变量(又称预测变量),仍然可以生成关于预测变量值中的变化如何与响应值变化相关联的见解。
当水平线比您的模型更好地解释数据时。 它主要发生在不包括截距的情况下。 没有截距,在预测目标变量方面,回归可能会比样本均值差。 这不仅是因为没有截距。 即使包含截距,它也可能是负的。在数学上,当模型的误差平方大于水平线上的总平方和时,这是可能的。
参考资料来源:百度百科-R平方
展开全部
R平方:决定系数,反应因变量的全部变异能通过回归关系被自变量解释的比例。如R平方为0.8,则表示回归关系可以解释因变量80%的变异。换句话说,如果我们能控制自变量不变,则因变量的变异程度会减少80%
在统计学中,R平方值的计算方法如下:
R平方值=回归平方和(ssreg)/总平方和(sstotal)
其中回归平方和=总平方和-残差平方和(ssresid)
以上几个名词解释如下:
总平方和:Const参数为True的情况下,总平方和=y的实际值与平均值的平方差之和;Const参数为False的情况下,总平方和=y的实际值的平方和。
残差平方和:残差平方和=y的估计值与y的实际值的平方差之和。
在线性回归分析中,可以使用RSQ函数计算R平方值。
RSQ函数语法为RSQ(known_y's,known_x's)
将源数据中的y轴数据和x轴数据分别代入,就可以求得其“线性”趋势线的R平方值。
在统计学中,R平方值的计算方法如下:
R平方值=回归平方和(ssreg)/总平方和(sstotal)
其中回归平方和=总平方和-残差平方和(ssresid)
以上几个名词解释如下:
总平方和:Const参数为True的情况下,总平方和=y的实际值与平均值的平方差之和;Const参数为False的情况下,总平方和=y的实际值的平方和。
残差平方和:残差平方和=y的估计值与y的实际值的平方差之和。
在线性回归分析中,可以使用RSQ函数计算R平方值。
RSQ函数语法为RSQ(known_y's,known_x's)
将源数据中的y轴数据和x轴数据分别代入,就可以求得其“线性”趋势线的R平方值。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
R*R是可决系数,详细参考链接。
EXCEL不知道有没有统计分析功能,有的话在对话框里选中可决系数这一项就能直接做出结果。一般我们都是用统计软件分析。
EXCEL不知道有没有统计分析功能,有的话在对话框里选中可决系数这一项就能直接做出结果。一般我们都是用统计软件分析。
参考资料: http://baike.baidu.com/view/2021095.html?wtp=tt
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |