已知一次函数y=kx+b的图像经过a(2,4)b(0,2)两点,且与y轴相交与c点。 1.求直线解析式 2.求△aoc的面积
5个回答
展开全部
把A(2,4),B(0,2)两点代入一次函数y=kx+b得4=2k+b 2=b
解得k=1 b=2
所以一次函数为y=x+2
令y=0解得x=-2
所以C点坐标是(-2,0)
所以三角形AOC的面积为SΔAOC=(1/2)*2*4=4
解得k=1 b=2
所以一次函数为y=x+2
令y=0解得x=-2
所以C点坐标是(-2,0)
所以三角形AOC的面积为SΔAOC=(1/2)*2*4=4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
将点a,b分别代入函数
2k+b=4
b=2
解得 k=1 b=2,故直线的解析式为 y=x+2;
当直线与x轴相交时,y=0, 即x+2=0 解得x=-2;
即C点的坐标为(-2,0),高为 4,底为2;
所以三角形的面积为S=1/2*2*4=4 。
希望对你有帮助,谢谢!!
2k+b=4
b=2
解得 k=1 b=2,故直线的解析式为 y=x+2;
当直线与x轴相交时,y=0, 即x+2=0 解得x=-2;
即C点的坐标为(-2,0),高为 4,底为2;
所以三角形的面积为S=1/2*2*4=4 。
希望对你有帮助,谢谢!!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
:(1)把A(2,4)、B(0,2)代入一次函数y=kx+b,得:b=2,k=1,
∴直线的解析式为:y=x+2.
y=x+2与x轴的交点为c,
c点坐标为:(-2,0),
所以△AOC的面积= ×OC×4=4.
故△AOC的面积为4.
∴直线的解析式为:y=x+2.
y=x+2与x轴的交点为c,
c点坐标为:(-2,0),
所以△AOC的面积= ×OC×4=4.
故△AOC的面积为4.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询