已知二次函数f(x)=ax^2+bx+c的导数为f'(x),f'(x)>0.对任意实数x,有f(x)>=0,则f(1)/f'(0)的最小值是
5个回答
展开全部
f'(x)=2ax+b
若对任意实数x,有f(x)≥0则a>0且△=b²-4ac≤0
你可以画一个图像看看,这样简单明了!
f(1)=a+b+c
f'(0)=b
f(1)/f'(0)=(a+b+c)/b
若对任意实数x,有f(x)≥0则a>0且△=b²-4ac≤0
你可以画一个图像看看,这样简单明了!
f(1)=a+b+c
f'(0)=b
f(1)/f'(0)=(a+b+c)/b
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已知二次函数f(x)=ax^2+bx+c的导数为f'(x).f'(x)>0,对任意实数x有f(x)≥0,则f(1)/f'(0)的最小值
解:由题意对任意实数x有f(x)≥0得
判别式Δ=b^2-4ac≤0,a≥(b^2)/4c
f(1)=a+b+c,f'(0)=b
∴f(1)/f(0)=(a+b+c)/b
=a/b+c/b+1(∵a≥(b^2)/4c)
≥b/4c+c/b+1
≥2√(b/4c*c/b)+1=2
当且仅当 b/4c=c/b ,b^2=4ac时, f(1)/f'(0)的最小值为2
解:由题意对任意实数x有f(x)≥0得
判别式Δ=b^2-4ac≤0,a≥(b^2)/4c
f(1)=a+b+c,f'(0)=b
∴f(1)/f(0)=(a+b+c)/b
=a/b+c/b+1(∵a≥(b^2)/4c)
≥b/4c+c/b+1
≥2√(b/4c*c/b)+1=2
当且仅当 b/4c=c/b ,b^2=4ac时, f(1)/f'(0)的最小值为2
参考资料: 已知二次函数f(x)=ax^2+bx+c的导数为f'(x).f'(x)>0,对任意实数x有f(x)≥0,则f(1)/f'(0)的最小值
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
因为所以,科学道理,要想知道,请拿钞票,不多不少,一亿正好,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
因为函数值始终大于等于0.所以图象在X轴上方,因此判别式大于等于0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询