求函数y=-sin²x+sinx+1(-π/4≤x≤π/4)的值域。
2个回答
展开全部
-π/4≤x≤π/4
-√2/2≤sinx≤√2/2
y=-sin²x+sinx+1
=-sin²x+sinx-1/4+1/4+1
=-(sin²x-sinx+1/4)+5/4
=-(sinx-1/2)²+5/4
0<=(sinx-1/2)²<=(-√2/2-1/2)²=3/4+√2/2
-3/4-√2/2<=-(sinx-1/2)²<=0
-3/4-√2/2+5/4<=-(sinx-1/2)²+5/4<=5/4
1/2-√2/2<=-(sinx-1/2)²+5/4<=5/4
所以函数y=-sin²x+sinx+1(-π/4≤x≤π/4)的值域为:[1/2-√2/2,5/4]
-√2/2≤sinx≤√2/2
y=-sin²x+sinx+1
=-sin²x+sinx-1/4+1/4+1
=-(sin²x-sinx+1/4)+5/4
=-(sinx-1/2)²+5/4
0<=(sinx-1/2)²<=(-√2/2-1/2)²=3/4+√2/2
-3/4-√2/2<=-(sinx-1/2)²<=0
-3/4-√2/2+5/4<=-(sinx-1/2)²+5/4<=5/4
1/2-√2/2<=-(sinx-1/2)²+5/4<=5/4
所以函数y=-sin²x+sinx+1(-π/4≤x≤π/4)的值域为:[1/2-√2/2,5/4]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询