已知函数f(x)=sin²x+2sinxcosx+3cos²x,x∈R
展开全部
解:
(2)
f(x)=sin²x+2sinxcosx+3cos²x
=sin²x+cos²x+2cos²x+sin2x
=1+2cos²x+sin2x
=1+con2x+1+sin2x
=2+√2sin(π/4+2x)
∵|sin(π/4+2x)|<=1
∴f(x)=2+√2sin(π/4+2x) >0
2nπ-π/2<= π/4+2x <=2nπ+π/2
2nπ-π3/4<= 2x <=2nπ+π/4
nπ-π3/8<= x <=nπ+π/8
f(x)的单调增区间为:[nπ-π3/8 , nπ+π/8] (n为整数)
(1)
π/4+2x=2nπ+π/2
X=nπ+π/8时 f(x)最大=2+√2 (n为整数)
(2)
f(x)=sin²x+2sinxcosx+3cos²x
=sin²x+cos²x+2cos²x+sin2x
=1+2cos²x+sin2x
=1+con2x+1+sin2x
=2+√2sin(π/4+2x)
∵|sin(π/4+2x)|<=1
∴f(x)=2+√2sin(π/4+2x) >0
2nπ-π/2<= π/4+2x <=2nπ+π/2
2nπ-π3/4<= 2x <=2nπ+π/4
nπ-π3/8<= x <=nπ+π/8
f(x)的单调增区间为:[nπ-π3/8 , nπ+π/8] (n为整数)
(1)
π/4+2x=2nπ+π/2
X=nπ+π/8时 f(x)最大=2+√2 (n为整数)
展开全部
f(x)=sin²x+2sinxcosx+3cos²x
=1+sin2x+2cos²x-1+1
=sin2x+cos2x+2
=√2sin(2x+π/4)+2
函数f(x)的最大值=2+√2
此时 2x+π/4=2kπ+π/2 x=kπ+π/8 自变量x的集合 {x|x=kπ+π/8}
单调增区间 2kπ-π/2<=2x+π/4<=2kπ+π/2
kπ-3π/8<=x<kπ+π/8
单调增区间[kπ-3π/8,kπ+π/8] k∈Z
=1+sin2x+2cos²x-1+1
=sin2x+cos2x+2
=√2sin(2x+π/4)+2
函数f(x)的最大值=2+√2
此时 2x+π/4=2kπ+π/2 x=kπ+π/8 自变量x的集合 {x|x=kπ+π/8}
单调增区间 2kπ-π/2<=2x+π/4<=2kπ+π/2
kπ-3π/8<=x<kπ+π/8
单调增区间[kπ-3π/8,kπ+π/8] k∈Z
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询