实数的定义

金牛咲
高粉答主

2019-01-29 · 关注我不会让你失望
知道小有建树答主
回答量:219
采纳率:100%
帮助的人:7.2万
展开全部

实数,是有理数和无理数的总称。数学上,实数定义为与数轴上的实数,点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。但仅仅以列举的方式不能描述实数的整体。

实数可以用来测量连续的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。在实际运用中,实数经常被近似成一个有限小数(保留小数点后 n 位,n为正整数)。

扩展资料

实数的基本定理:

1、上(下)确界原理:非空有上(下)界数集必有上(下)确界。

2、单调有界定理:单调有界数列必有极限。具体来说:单调增(减)有上(下)界数列必收敛。

3、闭区间套定理(柯西-康托尔定理):对于任何闭区间套,必存在属于所有闭区间的公共点。若区间长度趋于零,则该点是唯一公共点。

4、有限覆盖定理(博雷尔-勒贝格定理,海涅-波雷尔定理):闭区间上的任意开覆盖,必有有限子覆盖。或者说:闭区间上的任意一个开覆盖,必可从中取出有限个开区间来覆盖这个闭区间。

5、极限点定理(波尔查诺-魏尔斯特拉斯定理、聚点定理):有界无限点集必有聚点。或者说:每个无穷有界集至少有一个极限点。

6、有界闭区间的序列紧性(致密性定理):有界数列必有收敛子列。

7、完备性(柯西收敛准则):数列收敛的充要条件是其为柯西列。或者说:柯西列必收敛,收敛数列必为柯西列。

参考资料来源:百度百科-实数

穆子澈想我1997
2019-02-03 · TA获得超过44.3万个赞
知道小有建树答主
回答量:672
采纳率:100%
帮助的人:36.6万
展开全部

实数,是有理数和无理数的总称。数学上,实数定义为与数轴上的实数,点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。

实数可以分为有理数和无理数两类,或代数数和超越数两类。实数集通常用黑正体字母 R 表示。R表示n维实数空间。实数是不可数的。实数是实数理论的核心研究对象。

所有实数的集合则可称为实数系或实数连续统。任何一个完备的阿基米德有序域均可称为实数系。在保序同构意义下它是惟一的,常用R表示。由于R是定义了算数运算的运算系统,故有实数系这个名称。

扩展资料

实数的分类

一、按定义分:有理数、无理数。

1、有理数为整数(正整数、0、负整数)和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。

2、无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。 常见的无理数有非完全平方数的平方根、π和e。

二、按正负分:正数、负数、0。

1、正数是数学术语,比0大的数叫正数(positive number),0本身不算正数。正数与负数表示意义相反的量。正数前面常有一个符号“+”,通常可以省略不写。

2、负数是数学术语,比0小的数叫做负数,负数与正数表示意义相反的量。负数用负号(Minus Sign,即相当于减号)“-”和一个正数标记,如−2,代表的就是2的相反数。于是,任何正数前加上负号便成了负数。一个负数是其绝对值的相反数。

3、0是介于-1和1之间的整数。是最小的自然数,也是有理数。0既不是正数也不是负数,而是正数和负数的分界点。0没有倒数,0的相反数是0,0的绝对值是0,0的所有倍数都是0。0不能作为除数。

参考资料来源:百度百科—实数

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
快乐宝宝368
2011-12-03 · TA获得超过4774个赞
知道小有建树答主
回答量:466
采纳率:0%
帮助的人:445万
展开全部

包括有理数和无理数。其中无理数就是无限不循环小数,有理数就包括整数和分数。数学上,实数直观地定义为和数轴上的点一一对应的数。本来实数仅称作数,后来引入了虚数概念,原本的数称作“实数”——意义是“实在的数”。

这是初中的知识点。

有理数和无理数统称为实数。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
spite866
推荐于2017-12-15 · TA获得超过579个赞
知道答主
回答量:304
采纳率:0%
帮助的人:157万
展开全部
这是初中的知识点。有理数和无理数统称为实数。 有理数和无理数统称为实数,这是中学的定义。至于实数的严格定义,有康托尔的基本列说,戴德金的分割
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
初数宁静致远
2011-12-02 · TA获得超过1.5万个赞
知道大有可为答主
回答量:2741
采纳率:100%
帮助的人:2323万
展开全部
戴德金方法:有人批评戴德金分割(A,B)存在不够完备的地方。因为按照他定义无理数的方法,即如果A中无最大数,B中也无最小数,则称此“分割”为一个无理数。针对这种定义,有批评者问:在A中无最大数,B中也无最小数时,必须事先证明A与B之间的“空隙”只能容纳一个点,才能将此“分割”定义为一个(无理数)实数,但戴德金并未作此证明,就将此分割定义为一个实数而不是若干个甚至无数个实数,此空隙内是否还有非实数存在,戴德金也未给出否定的证明,这是否是戴德金实数理论的缺陷?批评者说,数学家戴德金是为了证明实数的完备性才这样定义实数的,他用这个不合理的实数定义回避了无穷小危机。对此有反对者说,以上批评者说的“空隙”一词,是没有意义的;其说的“一个点“的”点“字也是没有意义的,而戴德金的“分割”一词是有严格的定义的,采用的是经典的集合论的概念。按照集合论中的概念,“同一个“分割和”不相同“的分割,区分是很明确的,逻辑是很严密的;“同一个“分割定义成同一个实数,”不同的“分割是不同的实数,因此说”空隙“是否”一个点“的问题天然就不存在。

康托方法:康托无疑是连续统(有理数与无理数的统称)理论的创始人之一,有人说他是“实数理论研究的终结者”。但是他在创建连续统理论的时候首先涉及的概念是有限与无限,但是他也没有给出严格的定义,因为这也是很困难的,因为有限与无限是一对矛盾。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(12)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式