求证:[(sinx+cosx-1)(sinx-cosx+1)]/sin2x=(1-cosx)/sinx
1个回答
展开全部
[(sinx+cosx-1)(sinx-cosx+1)]/sin2x
=[sinx+(cosx-1)][sinx-(cosx-1)]/sin2x
=[(sinx)^2-(cosx-1)^2]/sin2x
=[(sinx)^2-(cosx)^2+2cosx-1]/sin2x
=[(sinx)^2-(cosx)^2+2cosx-1]/sin2x
=-[-(sinx)^2+(cosx)^2-2cosx+1]/sin2x
=-[1-(sinx)^2+(cosx)^2-2cosx]/sin2x
=-[(cosx)^2+(cosx)^2-2cosx]/sin2x
=-[2(cosx)^2-2cosx]/2sinxcosx
=-2cosx[cosx-1]/2sinxcosx
=-[cosx-1]/sinx
=(1-cosx)/sinx
=[sinx+(cosx-1)][sinx-(cosx-1)]/sin2x
=[(sinx)^2-(cosx-1)^2]/sin2x
=[(sinx)^2-(cosx)^2+2cosx-1]/sin2x
=[(sinx)^2-(cosx)^2+2cosx-1]/sin2x
=-[-(sinx)^2+(cosx)^2-2cosx+1]/sin2x
=-[1-(sinx)^2+(cosx)^2-2cosx]/sin2x
=-[(cosx)^2+(cosx)^2-2cosx]/sin2x
=-[2(cosx)^2-2cosx]/2sinxcosx
=-2cosx[cosx-1]/2sinxcosx
=-[cosx-1]/sinx
=(1-cosx)/sinx
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询