设数列﹛an﹜是公差不为0的等差数列,Sn为其前n项和,数列﹛bn﹜为等比数列,且a1=b1=2,S2=5b2,S4=25b3
1,求数列﹛an﹜﹛bn﹜的通项公式2,设﹛cn﹜满足cn=bnSn,问当n为何值时,cn取得最大值。...
1,求数列﹛an﹜﹛bn﹜的通项公式
2,设﹛cn﹜满足cn=bnSn,问当n为何值时,cn取得最大值。 展开
2,设﹛cn﹜满足cn=bnSn,问当n为何值时,cn取得最大值。 展开
展开全部
设{A(n)}的通项公式为:A(n)=2+d(n-1)
{B(n)}的通项公式为:B(n)=2×q^(n-1)
则{A(n)}的前n项和为:S(n)=[A(1)+A(n)]n/2=[4+d(n-1)]n/2
依题意得:[4+d(2-1)]×2/2=5×2×q^(2-1)
[4+d(4-1)]×4/2=25×2×q^(3-1) 解得:d1=4 q1=4/5 d2=0 q2=2/5(舍去)
所以S(n)=[4+d(n-1)]n/2=2n^2
B(n)=2×(2/5)^(n-1)
所以C(n)=S(n)×B(n)
=(2n^2)[2×(2/5)^(n-1))
=4×n^2×(2/5)^(n-1)
另C(n)对n求导:
C(n)=4×2n×(2/5)^(n-1)+4×n^2×(2/5)^(n-1)×ln(2/5)
=4n[2+n×ln(2/5)]×(2/5)^(n-1)
另C(n)=0,则n=0或a(由试根法求得2<a<3)
所以C(n)的最大值只有可能是C(1),C(2)或C(3)
C(1)=4×1^2×(2/5)^(1-1)=4
C(2)=4×2^2×(2/5)^(2-1)=6.4
C(3)=4×3^2×(2/5)^(3-1)=5.76
显然C(n)的最大值为C(2)=6.4
{B(n)}的通项公式为:B(n)=2×q^(n-1)
则{A(n)}的前n项和为:S(n)=[A(1)+A(n)]n/2=[4+d(n-1)]n/2
依题意得:[4+d(2-1)]×2/2=5×2×q^(2-1)
[4+d(4-1)]×4/2=25×2×q^(3-1) 解得:d1=4 q1=4/5 d2=0 q2=2/5(舍去)
所以S(n)=[4+d(n-1)]n/2=2n^2
B(n)=2×(2/5)^(n-1)
所以C(n)=S(n)×B(n)
=(2n^2)[2×(2/5)^(n-1))
=4×n^2×(2/5)^(n-1)
另C(n)对n求导:
C(n)=4×2n×(2/5)^(n-1)+4×n^2×(2/5)^(n-1)×ln(2/5)
=4n[2+n×ln(2/5)]×(2/5)^(n-1)
另C(n)=0,则n=0或a(由试根法求得2<a<3)
所以C(n)的最大值只有可能是C(1),C(2)或C(3)
C(1)=4×1^2×(2/5)^(1-1)=4
C(2)=4×2^2×(2/5)^(2-1)=6.4
C(3)=4×3^2×(2/5)^(3-1)=5.76
显然C(n)的最大值为C(2)=6.4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询