已知直线L1:4x-3y+6=0和直线L2:x=-1抛物线y^2=4x上一动点p到直线L1和直线L2距离之和的最小值是?
3个回答
展开全部
P在抛物线上,设P(y^2/4,y)
P到L1距离d1=|y^2-3y+6|/√(4^2+3^2)=|y^2-3y+6|/5
∵y^2-3y+6=y^2-3y+(3/2)^2-(3/2)^2+6=(y-3/2)^2+15/4>0
(也可用判别式△=(-3)^2-4*6=9-24=-15<0)
∴d1=(y^2-3y+6)/5
P到L2距离d2=|y^2/4+1|=y^2/4+1
距离之和d=d1+d2=(y^2-3y+6)/5+y^2/4+1
整理配方得 d=9/20*(y-2/3)^2+2
∴,当y=2/3时,距离之和最小值=2
此时,x=1/9
P到L1距离d1=|y^2-3y+6|/√(4^2+3^2)=|y^2-3y+6|/5
∵y^2-3y+6=y^2-3y+(3/2)^2-(3/2)^2+6=(y-3/2)^2+15/4>0
(也可用判别式△=(-3)^2-4*6=9-24=-15<0)
∴d1=(y^2-3y+6)/5
P到L2距离d2=|y^2/4+1|=y^2/4+1
距离之和d=d1+d2=(y^2-3y+6)/5+y^2/4+1
整理配方得 d=9/20*(y-2/3)^2+2
∴,当y=2/3时,距离之和最小值=2
此时,x=1/9
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:从P点做垂线到L1,垂足为M,PM为直线L3,在做PN平行x轴,N点在L1上。
又因为 L1垂直L3,k1=4/3 所以k3=-3/4
即L3方程式为:y=-3/4(x-x1)+ 根号x1
PN方程式为:y=1
所以PN与L1交于点(3/2根号x1-3/2,2根号x1)
则PN=-3/2根号x1+3/2+x1
根据直角三角形PMN,得出PM=-6/5根号x1+6/5
即:p到直线L1距离最小值是PM=-6/5根号x1+6/5
因为 P点过抛物线y^2=4x上
所以 令P(x1,根号x1)(x1大于等于0)
即:P到L2最小距离 min=x1+1
所以,p到直线L1和直线L2距离之和的最小值是
Min总=x1+1-6/5根号x1+6/5(设根号x1=t,x1=t2)
=9/5[(t-1/3)2+10]
=18
又因为 L1垂直L3,k1=4/3 所以k3=-3/4
即L3方程式为:y=-3/4(x-x1)+ 根号x1
PN方程式为:y=1
所以PN与L1交于点(3/2根号x1-3/2,2根号x1)
则PN=-3/2根号x1+3/2+x1
根据直角三角形PMN,得出PM=-6/5根号x1+6/5
即:p到直线L1距离最小值是PM=-6/5根号x1+6/5
因为 P点过抛物线y^2=4x上
所以 令P(x1,根号x1)(x1大于等于0)
即:P到L2最小距离 min=x1+1
所以,p到直线L1和直线L2距离之和的最小值是
Min总=x1+1-6/5根号x1+6/5(设根号x1=t,x1=t2)
=9/5[(t-1/3)2+10]
=18
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询