定义在R上的函数f(x)满足f(x+2)=f(x),且f(-x)=-f(x),当x∈(0,1)时f(x)=2∧x/4∧x+1

(1)求f(x)在(-1,1)上的解析式(2)判断函数在(0,1)上的单调性并证明(3)当u取何值时,方程f(x)=u在(-1,1)上有解不要复制粘贴!... (1)求f(x)在(-1,1)上的解析式
(2)判断函数在(0,1)上的单调性并证明
(3)当u取何值时,方程f(x)=u在(-1,1)上有解

不要复制粘贴!
展开
我才是无名小将
高粉答主

推荐于2016-12-01 · 每个回答都超有意思的
知道顶级答主
回答量:6.1万
采纳率:89%
帮助的人:2.4亿
展开全部
(1)f(-x)=-f(x),f(0)=0
当x∈(0,1)时f(x)=2∧x/(4∧x+1)
当x∈(-1,0)时,-x∈(0,1)
f(x)=-f(-x)=-2^(-x)/(4^(-x)+1)=-2^x/(4^x+1)
(2)任取1>x1>x2>0 2^x1-2^x2>0 1-2^(x1+x2)<0
f(x1)-f(x2)=2^x1/(4^x1+1)-2^x2/(4^x2+1)=(2^x1*4^x2+2^x1-2^x2*4^x1-2^x2)/(4^x1+1)(4^x2+1)
=(2^x1-2^x2)(1-2^(x1+x2))/(4^x1+1)(4^x2+1)
<0
f(x)在区间(0,1)上递减,由奇函数定义知在区间(-1,0)上递减,
(3)u=0时显然有解,解为x=0
0<x<1时,f(x)=u,令t=2^x>0
2^x/(4^x+1)=u>0
t/(t^2+1)=u
ut^2+u=t
ut^2-t+u=0
关于t的方程有实根,判别式大于等于零,即:
1-u^2>=0
又因为u>0
所以有:0<u<1

-1<x<0时,同理可得:-1<u<0
易冷松RX
2011-12-08 · TA获得超过2万个赞
知道大有可为答主
回答量:6091
采纳率:100%
帮助的人:3044万
展开全部
(1)奇函数,f(0)=0
若-1<x<0,则0<-x<1 f(x)=-f(-x)=-2^(-x)/[4^(-x)+1]=-2^x/(4^x+1)
f(x)={-2^x/(4^x+1)(-1<x<0),0(x=0),2^x/(4^x+1)(0<x<1)}
(2)设t=2^x,0<x<1 1<t<2
f(x)=g(t)=t/(t^2+1)=1/(t+1/t)
t+1/t在(1,2)增,1/(t+1/t)在(1,2)上减,即f(x)在(0,1)上单调递减。
(3)在(0,1)上,2/5<f(x)<1/2。由f(x)是奇函数可知,值域是(-1/2,-2/5)U{0}U(2/5,1/2)
所以,当-1/2<u<-2/5或u=0或2/5<u<1/2时,方程f(x)=u在(-1,1)上有解。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
零一境界
2011-12-08 · TA获得超过153个赞
知道小有建树答主
回答量:142
采纳率:0%
帮助的人:129万
展开全部
1) 因为f(x+2)=f(x),且f(-x)=-f(x)
所以f(x)的周期T=2,且f(x)为奇函数,即f(0)=0
所以当-x∈(0,1)时f(-x)=2∧(-x)/4∧(-x)+1
即当x∈(-1,0),f(-x)=4∧x/2∧x+1,而由于f(-x)=-f(x)
所以f(x)=-(4∧x/2∧x+1)
即f(x)在(-1,1)上的解析式为:当x∈(-1,0),f(x)=-(4∧x/2∧x+1)
x=0,f(0)=0
当x∈(0,1),f(x)=2∧x/4∧x+1
2)f‘(x)=-ln2/2^x 因为x∈(0,1),而ln2<0,2^x>0
所以f'(x)>0
所以函数在(0,1)上为增函数
3)分段结合图像求解就行
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
zx5914886
2011-12-08
知道答主
回答量:2
采纳率:0%
帮助的人:3309
展开全部
不会。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
cmdhyq
2011-12-08 · 贡献了超过141个回答
知道答主
回答量:141
采纳率:0%
帮助的人:38.7万
展开全部
要有图
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式