线性代数题欧式空间
设a1,a2…am是n维欧式空间V的一个标准正交向量组。证明对V中任意向量a有【求和(i从1开始到m)】(a,ai)^2≤a的模长的平方...
设a1,a2…am是n维欧式空间V的一个标准正交向量组。证明对V中任意向量a有【求和(i从1开始到m)】(a,ai)^2≤a的模长的平方
展开
2个回答
展开全部
记Q=【a1,a2,...,an】是正交阵,其中am+1,am+2,...,an和a1,...,am组成V的正交基,因此有Q^Ta模长的平方=a^TQQ^Ta=a^Ta=a的模长的平方。注意到要证不等式的左边是向量Q^Ta的前m个分量,因此不等式成立。
追问
Q^Ta模长的平方=a^TQQ^Ta=a^Ta=a的模长的平方
是怎么来的
追答
任意一个向量a的模长的平方都是a^Ta=a1^2+a2^2+...+an^2,这是必须知道的内容
黄先生
2024-12-27 广告
2024-12-27 广告
北京蓝宝、广州宏控、广州迈拓维矩、广州快捷等。在性价比方面,选择广州迈拓维矩矩阵切换器,性价比较高,6道测试工序,质量有保证。有以下优点:1.所有产品都是模块化设计,方便维护。2.矩阵都有输出长线驱动的设计,即插即用,不需要设置。3.软硬件...
点击进入详情页
本回答由黄先生提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询