试求一个正交的相似变换矩阵P,将已知的3阶对称阵A化为对角阵

已知3阶对称阵A=2,2,-22,5,-4-2,-4,5我算出来|A-λE|=-(λ-10)(λ-1)^2然后λ=1时不会做了。。。... 已知3阶对称阵A=
2,2,-2
2,5,-4
-2,-4,5

我算出来|A-λE|=-(λ-10)(λ-1)^2
然后λ=1时不会做了。。。
展开
李敏013
2011-12-11 · TA获得超过1052个赞
知道小有建树答主
回答量:396
采纳率:0%
帮助的人:141万
展开全部
把λ=1代入方程组(A-λE)X=0中,得到该方程组的系数矩阵为
1 2 -2 1 2 -2
2 4 -4 → 0 0 0
-2 -4 4 0 0 0

所以,这时,方程组与方程x1+2x2-2x3=0(x2,x3为自由未知量)同解,因此,令x2=1,x3=0,得到方程组的一个解,(-2,1,0)^T.
再令x2=0,x3=1,得到方程组的另一个与之线性无关的解,(2,0,1)^T.
所以,这时方程组的一个基础解系为(-2,1,0)^T,(2,0,1)^T。
当λ=10时,该方程组的系数矩阵为
-8 2 -2 2 -5 -4 2 -5 -4 2 -5 -4
2 -5 -4 → -8 2 -2 → 0 -18 -18 → 0 1 1
-2 -4 -5 -2 -4 -5 0 -9 -9 0 0 0

所以,这时方程组与2x1-5x2-4x3=0,x2+x3=0(x3为自由未知量)同解,令x3=﹣2,得到方程组的一个基础解系为(1,2,-2)^T.
令a1=(-2,1,0)^T,a2=(2,0,1)^T,a3=(1,2,-2)^T,则根据施密特正交化方法,c1=a1/||a1||=1/√5×(-2,1,0)^T,b2=a2-(a2,c1)c1=(2/5,4/5,1)^T,c2=b2/||b2||=(√5)/3×(2/5,4/5,1)^T,b3=a3-(a3,c1)c1-(a3,c2)c2=a3,c3=b3/||b3||=1/3×(1,2,-2)^T.
所以,矩阵P=﹣2/√5 2√5/15 1/3 它所对应的对角阵为1 0 0
1/√5 4√5/15 2/3 0 1 0
0 √5/3 -2/3 0 0 10
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
富港检测技术(东莞)有限公司_
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式