函数奇偶性问题

定义在R上的偶函数f(x)在区间(-,正无穷)上单调递增,且有f(2a^2+a+1)<f(3a^2+2a+1),求实数a的取值范围好吧我错了是在区间(负无穷,—)... 定义在R上的偶函数f(x)在区间(-,正无穷)上单调递增,且有f(2a^2+a+1)<f(3a^2+2a+1),求实数a的取值范围
好吧我错了是在区间(负无穷,—)
展开
czz_zhao
2011-12-10 · TA获得超过2057个赞
知道小有建树答主
回答量:382
采纳率:7%
帮助的人:268万
展开全部
根据根的判别式可以知道2a^2+a+1和3a^2+2a+1都是大于0的,由于是递增,所以2a^2+a+1<3a^2+2a+1,整理得:a^2+a>0 解得a<-1或a>0
追问
2a^2+a+1和3a^2+2a+1都是大于0的  这步是对的  但是应该是在(0,正无穷大)递减,所以2a^2+a+1》3a^2+2a+1 ,-1<a<0
追答
哈哈,楼主,你说的是在0,正无穷递增哟。你题目是这么给的。如果改成递减的话,你说的是对的;
Sievers分析仪
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
shsycxj
2011-12-10 · TA获得超过1.2万个赞
知道大有可为答主
回答量:2175
采纳率:0%
帮助的人:1100万
展开全部
∵3a²+2a+1=3(a²+2a/3+1/9)+2/3=3(a+1/3)²+2/3>0
2a²+a+1=2(a²+a/2+1/16)+7/8=2(a+1/4)²+7/8>0
∵(3a²+2a+1)-(2a²+a+1)=a²+a=a(a+1)
(1)当﹣1<a<0时,a(a+1)<0,此时(3a²+2a+1)<(2a²+a+1)
∵f(x)在区间(-,正无穷)上单调递增 ∴f(3a²+2a+1)<f(2a²+a+1)
与f(2a^2+a+1)<f(3a^2+2a+1)矛盾
(2)当a<﹣1或a>0时,a(a+1)>0,此时(3a²+2a+1)>(2a²+a+1)
∵f(x)在区间(-,正无穷)上单调递增 ∴f(3a²+2a+1)>f(2a²+a+1)
∴a<﹣1或a>0
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
易冷松RX
2011-12-10 · TA获得超过2万个赞
知道大有可为答主
回答量:6091
采纳率:100%
帮助的人:3113万
展开全部
2a^2+a+1=2(a+1/4)^2+7/8>0,3a^2+2a+1=3(a+1/3)^2+2/3>0
f(2a^2+a+1)<f(3a^2+2a+1) 2a^2+a+1<3a^2+2a+1 a^2+a>0 a<-1或a>0
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式