根号(1+sin2x) dx 的不定积分怎么求呢?
展开全部
J = ∫ √(1+sin2x) dx
= (1/2)∫ √(1+sint) dt,t=2x
Let y = 1+sint then dy = costdt = √y√(2-y)dt
J = ∫ √y * 1/[√y√(2-y)] dy
= ∫ 1/√(2-y) dy
= -∫ d(2-y)/√(2-y)
= -√(2-y) + C
= -√[2-(1+sin2x)] + C
= -√(1-sin2x) + C
∫[π/6,π/3] (1+cotx)² dx
= ∫[π/6,π/3] (1+2cotx+cot²x) dx
= ∫[π/6,π/3] (1+2cotx) dx + ∫[π/6,π/3] (csc²x-1) dx
= [2ln|sinx| - cotx] [π/6,π/3]
= [2lnsin(π/3) - cot(π/3)] - [2lnsin(π/6) - cot(π/6)]
= 2/√3 + ln(3)
= (1/2)∫ √(1+sint) dt,t=2x
Let y = 1+sint then dy = costdt = √y√(2-y)dt
J = ∫ √y * 1/[√y√(2-y)] dy
= ∫ 1/√(2-y) dy
= -∫ d(2-y)/√(2-y)
= -√(2-y) + C
= -√[2-(1+sin2x)] + C
= -√(1-sin2x) + C
∫[π/6,π/3] (1+cotx)² dx
= ∫[π/6,π/3] (1+2cotx+cot²x) dx
= ∫[π/6,π/3] (1+2cotx) dx + ∫[π/6,π/3] (csc²x-1) dx
= [2ln|sinx| - cotx] [π/6,π/3]
= [2lnsin(π/3) - cot(π/3)] - [2lnsin(π/6) - cot(π/6)]
= 2/√3 + ln(3)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询