4个回答
展开全部
{an}为等比数列,则a3 = a1q^2,a4 = a1q^3,且a1≠0
a1,a3,a4为等差数列,即a1+a4 = 2a3,a1 + a1q^3 = 2a1q^2
两边约去a1得1+q^3 = 2q^2
q^3 - 2q^2 + 1 = 0
q^3 - q^2 - (q^2 -1) = 0
q^2(q-1) - (q+1)(q-1) = 0
(q^2-q-1) (q-1) = 0
q^2 - q -1 = 0或q-1=0
即q = 1/2 ± 根号5 / 2或者q = 1
a1,a3,a4为等差数列,即a1+a4 = 2a3,a1 + a1q^3 = 2a1q^2
两边约去a1得1+q^3 = 2q^2
q^3 - 2q^2 + 1 = 0
q^3 - q^2 - (q^2 -1) = 0
q^2(q-1) - (q+1)(q-1) = 0
(q^2-q-1) (q-1) = 0
q^2 - q -1 = 0或q-1=0
即q = 1/2 ± 根号5 / 2或者q = 1
展开全部
设公比为q 则
a3=a1*q^2
a4=a1*q^3
又因为a1,a3,a4三项成等差数列
则 a3-a1=a4-a3
则 q=1或者q=【(根号5)+1】/2或者 q=【-(根号5)+1】/2
a3=a1*q^2
a4=a1*q^3
又因为a1,a3,a4三项成等差数列
则 a3-a1=a4-a3
则 q=1或者q=【(根号5)+1】/2或者 q=【-(根号5)+1】/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
a3 = a1q^2,a4 = a1q^3,且a1≠0
a1,a3,a4为等差数列,即a1+a4 = 2a3,a1 + a1q^3 = 2a1q^2
q^3 - 2q^2 + 1 = 0
q^3 - q^2 - (q^2 -1) = 0
q^2(q-1) - (q+1)(q-1) = 0
q^2 - q -1 = 0或q-1=0
即q = 1/2 ± 根号5 / 2或者q = 1
同时 q不等于1,那么q=q = 1/2 ± 根号5 / 2
a1,a3,a4为等差数列,即a1+a4 = 2a3,a1 + a1q^3 = 2a1q^2
q^3 - 2q^2 + 1 = 0
q^3 - q^2 - (q^2 -1) = 0
q^2(q-1) - (q+1)(q-1) = 0
q^2 - q -1 = 0或q-1=0
即q = 1/2 ± 根号5 / 2或者q = 1
同时 q不等于1,那么q=q = 1/2 ± 根号5 / 2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
11
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询