3个回答
展开全部
cos²x=(1/2) ( 1+cos2x)
偶函数在对称区间上的积分
I = ∫[0,π/2] x² (1+cos2x) dx
∫ x² cos2x dx = (1/2) x² sin2x - ∫ x sin2x dx
= (1/2) x² sin2x + (1/2) x cos2x - (1/2) ∫ cos2x dx
= (1/2) x² sin2x + (1/2) x cos2x - (1/4) sin2x + C
I = [ x³/3 + (1/2) x² sin2x + (1/2) x cos2x - (1/4) sin2x ] | [0,π/2]
= π³/24 - π/4
偶函数在对称区间上的积分
I = ∫[0,π/2] x² (1+cos2x) dx
∫ x² cos2x dx = (1/2) x² sin2x - ∫ x sin2x dx
= (1/2) x² sin2x + (1/2) x cos2x - (1/2) ∫ cos2x dx
= (1/2) x² sin2x + (1/2) x cos2x - (1/4) sin2x + C
I = [ x³/3 + (1/2) x² sin2x + (1/2) x cos2x - (1/4) sin2x ] | [0,π/2]
= π³/24 - π/4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询