线性代数 为什么一个3阶矩阵,r(A)=1 那么它有2个0为特征值呢?
4个回答
展开全部
因为秩是1的方阵一定能相似对角化,证明可以从这样入手 秩为1的矩阵可以化成两个列向量的乘积(一个的专职)相似秩相等,所以对角阵秩为一 他的猪对角线一定有两个零(对于三界矩阵) 告诉你学好线性代数就牛叉的就是把秩运用自如,秩完全搞懂 一切顺利…哈哈哈哈哈
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
可以当公式来记:对于n阶矩阵,如果r(A)=1,必有n-1个特征值为0,剩下一个的特征值等于该矩阵主对角元素之和。理由:|λE-A|=λ的n次方-∑aii*λ的(n-1)次方=0。。。即:λ1=∑aii、λ2=λ3=。。。=λn=0 ∑aii=a11+a22+...+ann
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
特征值的方面
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询