如图,P是∠BAC内的一点,PE⊥AB,PF⊥AC,垂足分别为点E、F,PE=PF。 求证:AE=AF。
2个回答
2012-03-20
展开全部
证明:(1)连接AP
∵PE⊥AB,PF⊥AC
∴△AFP和△AEP均为直角三角形
∴在Rt△AFP和Rt△AEP中
AE=AF AP=AP
∴Rt△AEP≌Rt△AFP(HL)
∴PE=PF
(2)∵Rt△AEP≌Rt△AFP
∴∠PAE=∠PAF
∴AP平分∠BAC
∴点P在∠BAC的角平分线上
∵PE⊥AB,PF⊥AC
∴△AFP和△AEP均为直角三角形
∴在Rt△AFP和Rt△AEP中
AE=AF AP=AP
∴Rt△AEP≌Rt△AFP(HL)
∴PE=PF
(2)∵Rt△AEP≌Rt△AFP
∴∠PAE=∠PAF
∴AP平分∠BAC
∴点P在∠BAC的角平分线上
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询