计算:(1+1/2)(1+1/2的平方)(1+1/2的四次方)(1+1/2的八次方)+2/2的十六次
展开全部
已知式子乘以(1-1/2),连续应用平方差公式可得结果。
原式=2×(1-1/2)(1+1/2)[1+1/(2^2)][1+1/(2^4)][1+1/(2^8)][1+1/(2^16)]
=2×[1-1/(2^2)][1+1/(2^2)][1+1/(2^4)][1+1/(2^8)][1+1/(2^16)]
=2×[1-1/(2^4)][1+1/(2^4)][1+1/(2^8)][1+1/(2^16)]
=2×[1-1/(2^8)][1+1/(2^8)][1+1/(2^16)]
=2×[1-1/(2^16)][1+1/(2^16)]
=2×[1-1/(2^32)]
=2-1/(2^31)
原式=2×(1-1/2)(1+1/2)[1+1/(2^2)][1+1/(2^4)][1+1/(2^8)][1+1/(2^16)]
=2×[1-1/(2^2)][1+1/(2^2)][1+1/(2^4)][1+1/(2^8)][1+1/(2^16)]
=2×[1-1/(2^4)][1+1/(2^4)][1+1/(2^8)][1+1/(2^16)]
=2×[1-1/(2^8)][1+1/(2^8)][1+1/(2^16)]
=2×[1-1/(2^16)][1+1/(2^16)]
=2×[1-1/(2^32)]
=2-1/(2^31)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
=(1+1/2)(1+1/2²)(1+1/2^4)(1+1/2^8)(1-1/2)/(1-1/2)+2/2^16
=(1-1/2^2)(1+1/2^2)(1+1/2^4)(1+1/2^8)/(-1/2)+1/2^15
=(1-1/2^4)(……)/(-1/2)+1/2^15
=(1-1/2^8)(1+1/2^8)/(-1/2)+1/2^15
=(1-1/2^16)/(-1/2)+1/2^15
=-2+1/2^15+1/2^15
=-2+1/2^14
=(1-1/2^2)(1+1/2^2)(1+1/2^4)(1+1/2^8)/(-1/2)+1/2^15
=(1-1/2^4)(……)/(-1/2)+1/2^15
=(1-1/2^8)(1+1/2^8)/(-1/2)+1/2^15
=(1-1/2^16)/(-1/2)+1/2^15
=-2+1/2^15+1/2^15
=-2+1/2^14
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询