线性代数判断题求解释

1实对称矩阵的非零特征值的个数等于它的秩2若a1,a2,...ak线性无关且都是A的特征向量,则将他们先正交化,再单位化后仍为A的特征向量3二次型f(x1,x2,...,... 1 实对称矩阵的非零特征值的个数等于它的秩
2 若a1,a2,...ak线性无关且都是A的特征向量,则将他们先正交化,再单位化后仍为A的特征向量
3 二次型f(x1,x2,...,xn)=xTAx在正交变换x=Py下一定化为标准型
4已知A我in阶矩阵,x为n维列向量,如果A不对称,则xTAx不是二次型
5若A为n阶实对称矩阵,且二次型f(x1,x2,...,xn)=xTAx正定,则A的主对角线上的元素全为正
6若A为n阶实对称矩阵,且二次型f(x1,x2,...,xn)=xTAx正定,则对一切n维向量x,xTAx全为正
展开
lry31383
高粉答主

2011-12-20 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.5万
采纳率:91%
帮助的人:1.6亿
展开全部
1. 正确
2. 错. 属于同一个特征值的线性无关的特征向量才对
3. 错.
4. 错. x^TAx 总是二次型, 只是其矩阵不一定是A
5. 对
6. 错. x=0时...
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式