已知函数f(x)=ln(x+1)/(x-1),附图
2个回答
展开全部
(1),x+1/x-1>0
x>1或x<-1
f(-x)=ln(1-x/-x-1)=ln(x-1/x+1)=ln[(x+1/x-1)^-1]=-(lnx+1/x-1)
则f(x)为奇函数。
3.因为f(x)=ln[(x+1)/(x-1)]=ln[1+2/(x-1)]
所以函数f(x)在(-∞,-1)上是减函数,在(1,+∞)上也是减函数
对于X∈【2,6】,f(x)=[(x+1)/(x-1)]>ln{m/[(x+1)*(7-x)]}恒成立
则(x+1)/(x-1)>m/[(x+1)*(7-x)]
因为x+1>0,所以上式可化为:
1/(x-1)>m/(7-x)
即1/(x-1) -m/(7-x)>0
通分得:
(7-x-mx+m)/[(x-1)(7-x)]>0
即[(-x+1)m+7-x]/[(x-1)(7-x)]>0
因为x-1>0且7-x>0
所以上式可化为:
(-x+1)m+7-x>0
即(1-x)m>x-7
两边同乘以-1,可得:
(x-1)m>x-7
则m>(x-7)/(x-1) (*)
又(x-7)/(x-1)=1-6/(x-1)且2≤x≤6,
则当x=2时,(x-7)/(x-1)有极小值-5
当x=6时,(x-7)/(x-1)有极大值-1/5
要使(*)式对于任意X∈【2,6】都成立,须使得:m>-1/5
所以m的取值范围是:m>-1/5
4.因为f(x)=ln[(x+1)/(x-1)]=ln(x+1)-ln(x-1)
所以f(2)+f(4)+f(6)+·····+f(2n)
=(ln3-ln1) +(ln5-ln3)+(ln7-ln5)+...+[ln(2n-1)-ln(2n-3)]+[ln(2n+1)-ln(2n-1)]
=ln(2n+1)
令g(n)=ln(2n+1) -(2n+2n²)
则g'(n)=2/(2n+1) -(2+4n),其中n∈N
=[2/(2n+1)]*[1-(2n+1)²]
因为n∈N,所以2n+1>0且1-(2n+1)²<0
则g'(n)<0
所以函数g(n)在n∈N上是减函数
则当n=1时,g(n)有最大值ln3-4<0
所以对于任意n∈N,g(n)<0
即ln(2n+1) -(2n+2n²)<0
ln(2n+1) <(2n+2n²)
所以当n∈N时,f(2)+f(4)+f(6)+·····+f(2n)<2n+2n²
x>1或x<-1
f(-x)=ln(1-x/-x-1)=ln(x-1/x+1)=ln[(x+1/x-1)^-1]=-(lnx+1/x-1)
则f(x)为奇函数。
3.因为f(x)=ln[(x+1)/(x-1)]=ln[1+2/(x-1)]
所以函数f(x)在(-∞,-1)上是减函数,在(1,+∞)上也是减函数
对于X∈【2,6】,f(x)=[(x+1)/(x-1)]>ln{m/[(x+1)*(7-x)]}恒成立
则(x+1)/(x-1)>m/[(x+1)*(7-x)]
因为x+1>0,所以上式可化为:
1/(x-1)>m/(7-x)
即1/(x-1) -m/(7-x)>0
通分得:
(7-x-mx+m)/[(x-1)(7-x)]>0
即[(-x+1)m+7-x]/[(x-1)(7-x)]>0
因为x-1>0且7-x>0
所以上式可化为:
(-x+1)m+7-x>0
即(1-x)m>x-7
两边同乘以-1,可得:
(x-1)m>x-7
则m>(x-7)/(x-1) (*)
又(x-7)/(x-1)=1-6/(x-1)且2≤x≤6,
则当x=2时,(x-7)/(x-1)有极小值-5
当x=6时,(x-7)/(x-1)有极大值-1/5
要使(*)式对于任意X∈【2,6】都成立,须使得:m>-1/5
所以m的取值范围是:m>-1/5
4.因为f(x)=ln[(x+1)/(x-1)]=ln(x+1)-ln(x-1)
所以f(2)+f(4)+f(6)+·····+f(2n)
=(ln3-ln1) +(ln5-ln3)+(ln7-ln5)+...+[ln(2n-1)-ln(2n-3)]+[ln(2n+1)-ln(2n-1)]
=ln(2n+1)
令g(n)=ln(2n+1) -(2n+2n²)
则g'(n)=2/(2n+1) -(2+4n),其中n∈N
=[2/(2n+1)]*[1-(2n+1)²]
因为n∈N,所以2n+1>0且1-(2n+1)²<0
则g'(n)<0
所以函数g(n)在n∈N上是减函数
则当n=1时,g(n)有最大值ln3-4<0
所以对于任意n∈N,g(n)<0
即ln(2n+1) -(2n+2n²)<0
ln(2n+1) <(2n+2n²)
所以当n∈N时,f(2)+f(4)+f(6)+·····+f(2n)<2n+2n²
追问
先谢谢你,打这么长,辛苦了。我觉得第二题好像做错了,是ln{m/[(x-1)*(7-x)]},
你看成ln{m/[(x+1)*(7-x)]}了吧,
然后第三题,连续设g(n)和g'(n)都有点不知道是要干什么了,可以说一下第三小题的解题思路吗?谢了
追答
= =这我什么时候做的= =好纠结……
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询