求微分方程的通解[y+(x^2+y^2)^1/2]dx-xdy=0

百度网友581c622
2011-12-21 · TA获得超过4377个赞
知道大有可为答主
回答量:1826
采纳率:0%
帮助的人:1340万
展开全部
[y+(x^2+y^2)^1/2]dx-xdy=0
>dy/dx=y/x+(1+(y/x)^2)^(1/2)
设z=y/x,则dy/dx=z+xdz/dx
>z+xdz/dx=z+(1+z^2)^(1/2)
>1/(1+z^2)^(1/2)dz=1/xdx
>z+(1+z^2)^(1/2)=cx
把y回代:
>y+(x^2+y^2)^1/2=cx^2
【OK?】
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2011-12-21
展开全部
CCd
170
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式