sin^4x(e^x/1+e^x)的定积分,上限是π/2,下限是-π/2
3个回答
展开全部
I = ∫(-π/2->π/2) (e^x)sin⁴x/(1+e^x) dx
Let x = -y,dx = -dy
=> ∫(π/2->-π/2) (e^-y)sin⁴(-y) / (1+e^-y) (-dy)
= ∫(-π/2->π/2) sin⁴y/(1+e^y) dy
= ∫(-π/2->π/2) sin⁴x/(1+e^x) dx = J
I = (1/2)(I+J)
= (1/2)[∫(-π/2->π/2) (e^x)sin⁴x/(1+e^x) dx + ∫(-π/2->π/2) sin⁴x/(1+e^x) dx]
= (1/2)∫(-π/2->π/2) (1+e^x)sin⁴x/(1+e^x) dx
= (1/2)∫(-π/2->π/2) sin⁴x dx
= (2)(1/2)∫(0->π/2) [(1-cos2x)/2)]² dx
= (1/4)∫(0->π/2) (1-2cos2x+cos²2x) dx
= (1/4)∫(0->π/2) (1-2cos2x) dx + (1/8)∫(0->π/2) (1+cos4x) dx
= (1/4)(x - sin2x) + (1/8)(x + 1/4 * sin4x)
= (1/4)(π/2 - sinπ) + (1/8)(π/2 + 1/4 * sin2π)
= π/8 + π/16
= 3π/16
Let x = -y,dx = -dy
=> ∫(π/2->-π/2) (e^-y)sin⁴(-y) / (1+e^-y) (-dy)
= ∫(-π/2->π/2) sin⁴y/(1+e^y) dy
= ∫(-π/2->π/2) sin⁴x/(1+e^x) dx = J
I = (1/2)(I+J)
= (1/2)[∫(-π/2->π/2) (e^x)sin⁴x/(1+e^x) dx + ∫(-π/2->π/2) sin⁴x/(1+e^x) dx]
= (1/2)∫(-π/2->π/2) (1+e^x)sin⁴x/(1+e^x) dx
= (1/2)∫(-π/2->π/2) sin⁴x dx
= (2)(1/2)∫(0->π/2) [(1-cos2x)/2)]² dx
= (1/4)∫(0->π/2) (1-2cos2x+cos²2x) dx
= (1/4)∫(0->π/2) (1-2cos2x) dx + (1/8)∫(0->π/2) (1+cos4x) dx
= (1/4)(x - sin2x) + (1/8)(x + 1/4 * sin4x)
= (1/4)(π/2 - sinπ) + (1/8)(π/2 + 1/4 * sin2π)
= π/8 + π/16
= 3π/16
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
个人认为,你也可以参考下分步积分法
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询